1
Fork 0
mirror of https://github.com/RGBCube/superfreq synced 2025-07-27 08:57:46 +00:00
superfreq/src/daemon.rs
2025-06-06 15:15:00 +02:00

671 lines
26 KiB
Rust

use crate::config::{AppConfig, LogLevel};
use crate::core::SystemReport;
use crate::engine;
use crate::monitor;
use crate::util::error::{AppError, ControlError};
use log::{LevelFilter, debug, error, info, warn};
use std::collections::VecDeque;
use std::fs::File;
use std::io::Write;
use std::sync::Arc;
use std::sync::atomic::{AtomicBool, Ordering};
use std::time::{Duration, Instant};
/// Parameters for computing optimal polling interval
struct IntervalParams {
/// Base polling interval in seconds
base_interval: u64,
/// Minimum allowed polling interval in seconds
min_interval: u64,
/// Maximum allowed polling interval in seconds
max_interval: u64,
/// How rapidly CPU usage is changing
cpu_volatility: f32,
/// How rapidly temperature is changing
temp_volatility: f32,
/// Battery discharge rate in %/hour if available
battery_discharge_rate: Option<f32>,
/// Time since last detected user activity
last_user_activity: Duration,
/// Whether the system appears to be idle
is_system_idle: bool,
/// Whether the system is running on battery power
on_battery: bool,
}
/// Calculate the idle time multiplier based on system idle duration
///
/// Returns a multiplier between 1.0 and 5.0 (capped):
/// - For idle times < 2 minutes: Linear interpolation from 1.0 to 2.0
/// - For idle times >= 2 minutes: Logarithmic scaling (1.0 + log2(minutes))
fn idle_multiplier(idle_secs: u64) -> f32 {
if idle_secs == 0 {
return 1.0; // No idle time, no multiplier effect
}
let idle_factor = if idle_secs < 120 {
// Less than 2 minutes (0 to 119 seconds)
// Linear interpolation from 1.0 (at 0s) to 2.0 (at 120s)
1.0 + (idle_secs as f32) / 120.0
} else {
// 2 minutes (120 seconds) or more
let idle_time_minutes = idle_secs / 60;
// Logarithmic scaling: 1.0 + log2(minutes)
1.0 + (idle_time_minutes as f32).log2().max(0.5)
};
// Cap the multiplier to avoid excessive intervals
idle_factor.min(5.0) // max factor of 5x
}
/// Calculate optimal polling interval based on system conditions and history
///
/// Returns Ok with the calculated interval, or Err if the configuration is invalid
fn compute_new(
params: &IntervalParams,
system_history: &SystemHistory,
) -> Result<u64, ControlError> {
// Use the centralized validation function
validate_poll_intervals(params.min_interval, params.max_interval)?;
// Start with base interval
let mut adjusted_interval = params.base_interval;
// If we're on battery, we want to be more aggressive about saving power
if params.on_battery {
// Apply a multiplier based on battery discharge rate
if let Some(discharge_rate) = params.battery_discharge_rate {
if discharge_rate > 20.0 {
// High discharge rate - increase polling interval significantly (3x)
adjusted_interval = adjusted_interval.saturating_mul(3);
} else if discharge_rate > 10.0 {
// Moderate discharge - double polling interval (2x)
adjusted_interval = adjusted_interval.saturating_mul(2);
} else {
// Low discharge rate - increase by 50% (multiply by 3/2)
adjusted_interval = adjusted_interval.saturating_mul(3).saturating_div(2);
}
} else {
// If we don't know discharge rate, use a conservative multiplier (2x)
adjusted_interval = adjusted_interval.saturating_mul(2);
}
}
// Adjust for system idleness
if params.is_system_idle {
let idle_time_seconds = params.last_user_activity.as_secs();
// Apply adjustment only if the system has been idle for a non-zero duration
if idle_time_seconds > 0 {
let idle_factor = idle_multiplier(idle_time_seconds);
debug!(
"System idle for {} seconds (approx. {} minutes), applying idle factor: {:.2}x",
idle_time_seconds,
(idle_time_seconds as f32 / 60.0).round(),
idle_factor
);
// Convert f32 multiplier to integer-safe math
// Multiply by a large number first, then divide to maintain precision
// Use 1000 as the scaling factor to preserve up to 3 decimal places
let scaling_factor = 1000;
let scaled_factor = (idle_factor * scaling_factor as f32) as u64;
adjusted_interval = adjusted_interval
.saturating_mul(scaled_factor)
.saturating_div(scaling_factor);
}
// If idle_time_seconds is 0, no factor is applied by this block
}
// Adjust for CPU/temperature volatility
if params.cpu_volatility > 10.0 || params.temp_volatility > 2.0 {
// For division by 2 (halving the interval), we can safely use integer division
adjusted_interval = (adjusted_interval / 2).max(1);
}
// Enforce a minimum of 1 second to prevent busy loops, regardless of params.min_interval
let min_safe_interval = params.min_interval.max(1);
let new_interval = adjusted_interval.clamp(min_safe_interval, params.max_interval);
// Blend the new interval with the cached value if available
let blended_interval = if let Some(cached) = system_history.last_computed_interval {
// Use a weighted average: 70% previous value, 30% new value
// This smooths out drastic changes in polling frequency
const PREVIOUS_VALUE_WEIGHT: u128 = 7; // 70%
const NEW_VALUE_WEIGHT: u128 = 3; // 30%
const TOTAL_WEIGHT: u128 = PREVIOUS_VALUE_WEIGHT + NEW_VALUE_WEIGHT; // 10
// XXX: Use u128 arithmetic to avoid overflow with large interval values
let result = (u128::from(cached) * PREVIOUS_VALUE_WEIGHT
+ u128::from(new_interval) * NEW_VALUE_WEIGHT)
/ TOTAL_WEIGHT;
result as u64
} else {
new_interval
};
// Blended result still needs to respect the configured bounds
// Again enforce minimum of 1 second regardless of params.min_interval
Ok(blended_interval.clamp(min_safe_interval, params.max_interval))
}
/// Tracks historical system data for "advanced" adaptive polling
#[derive(Debug)]
struct SystemHistory {
/// Last several CPU usage measurements
cpu_usage_history: VecDeque<f32>,
/// Last several temperature readings
temperature_history: VecDeque<f32>,
/// Time of last detected user activity
last_user_activity: Instant,
/// Previous battery percentage (to calculate discharge rate)
last_battery_percentage: Option<f32>,
/// Timestamp of last battery reading
last_battery_timestamp: Option<Instant>,
/// Battery discharge rate (%/hour)
battery_discharge_rate: Option<f32>,
/// Time spent in each system state
state_durations: std::collections::HashMap<SystemState, Duration>,
/// Last time a state transition happened
last_state_change: Instant,
/// Current system state
current_state: SystemState,
/// Last computed optimal polling interval
last_computed_interval: Option<u64>,
}
impl Default for SystemHistory {
fn default() -> Self {
Self {
cpu_usage_history: VecDeque::new(),
temperature_history: VecDeque::new(),
last_user_activity: Instant::now(),
last_battery_percentage: None,
last_battery_timestamp: None,
battery_discharge_rate: None,
state_durations: std::collections::HashMap::new(),
last_state_change: Instant::now(),
current_state: SystemState::default(),
last_computed_interval: None,
}
}
}
impl SystemHistory {
/// Update system history with new report data
fn update(&mut self, report: &SystemReport) {
// Update CPU usage history
if !report.cpu_cores.is_empty() {
let mut total_usage: f32 = 0.0;
let mut core_count: usize = 0;
for core in &report.cpu_cores {
if let Some(usage) = core.usage_percent {
total_usage += usage;
core_count += 1;
}
}
if core_count > 0 {
let avg_usage = total_usage / core_count as f32;
// Keep only the last 5 measurements
if self.cpu_usage_history.len() >= 5 {
self.cpu_usage_history.pop_front();
}
self.cpu_usage_history.push_back(avg_usage);
// Update last_user_activity if CPU usage indicates activity
// Consider significant CPU usage or sudden change as user activity
if avg_usage > 20.0
|| (self.cpu_usage_history.len() > 1
&& (avg_usage - self.cpu_usage_history[self.cpu_usage_history.len() - 2])
.abs()
> 15.0)
{
self.last_user_activity = Instant::now();
debug!("User activity detected based on CPU usage");
}
}
}
// Update temperature history
if let Some(temp) = report.cpu_global.average_temperature_celsius {
if self.temperature_history.len() >= 5 {
self.temperature_history.pop_front();
}
self.temperature_history.push_back(temp);
// Significant temperature increase can indicate user activity
if self.temperature_history.len() > 1 {
let temp_change =
temp - self.temperature_history[self.temperature_history.len() - 2];
if temp_change > 5.0 {
// 5°C rise in temperature
self.last_user_activity = Instant::now();
debug!("User activity detected based on temperature change");
}
}
}
// Update battery discharge rate
if let Some(battery) = report.batteries.first() {
// Reset when we are charging or have just connected AC
if battery.ac_connected {
// Reset discharge tracking but continue updating the rest of
// the history so we still detect activity/load changes on AC.
self.battery_discharge_rate = None;
self.last_battery_percentage = None;
self.last_battery_timestamp = None;
}
if let Some(current_percentage) = battery.capacity_percent {
let current_percent = f32::from(current_percentage);
if let (Some(last_percentage), Some(last_timestamp)) =
(self.last_battery_percentage, self.last_battery_timestamp)
{
let elapsed_hours = last_timestamp.elapsed().as_secs_f32() / 3600.0;
// Only calculate discharge rate if at least 30 seconds have passed
// and we're not on AC power
if elapsed_hours > 0.0083 && !battery.ac_connected {
// 0.0083 hours = 30 seconds
// Calculate discharge rate in percent per hour
let percent_change = last_percentage - current_percent;
if percent_change > 0.0 {
// Only if battery is discharging
let hourly_rate = percent_change / elapsed_hours;
// Clamp the discharge rate to a reasonable maximum value (100%/hour)
let clamped_rate = hourly_rate.min(100.0);
self.battery_discharge_rate = Some(clamped_rate);
}
}
}
self.last_battery_percentage = Some(current_percent);
self.last_battery_timestamp = Some(Instant::now());
}
}
// Update system state tracking
let new_state = determine_system_state(report, self);
if new_state != self.current_state {
// Record time spent in previous state
let time_in_state = self.last_state_change.elapsed();
*self
.state_durations
.entry(self.current_state.clone())
.or_insert(Duration::ZERO) += time_in_state;
// State changes (except to Idle) likely indicate user activity
if new_state != SystemState::Idle && new_state != SystemState::LowLoad {
self.last_user_activity = Instant::now();
debug!("User activity detected based on system state change to {new_state:?}");
}
// Update state
self.current_state = new_state;
self.last_state_change = Instant::now();
}
// Check for significant load changes
if report.system_load.load_avg_1min > 1.0 {
self.last_user_activity = Instant::now();
debug!("User activity detected based on system load");
}
}
/// Calculate CPU usage volatility (how much it's changing)
fn get_cpu_volatility(&self) -> f32 {
if self.cpu_usage_history.len() < 2 {
return 0.0;
}
let mut sum_of_changes = 0.0;
for i in 1..self.cpu_usage_history.len() {
sum_of_changes += (self.cpu_usage_history[i] - self.cpu_usage_history[i - 1]).abs();
}
sum_of_changes / (self.cpu_usage_history.len() - 1) as f32
}
/// Calculate temperature volatility
fn get_temperature_volatility(&self) -> f32 {
if self.temperature_history.len() < 2 {
return 0.0;
}
let mut sum_of_changes = 0.0;
for i in 1..self.temperature_history.len() {
sum_of_changes += (self.temperature_history[i] - self.temperature_history[i - 1]).abs();
}
sum_of_changes / (self.temperature_history.len() - 1) as f32
}
/// Determine if the system appears to be idle
fn is_system_idle(&self) -> bool {
if self.cpu_usage_history.is_empty() {
return false;
}
// System considered idle if the average CPU usage of last readings is below 10%
let recent_avg =
self.cpu_usage_history.iter().sum::<f32>() / self.cpu_usage_history.len() as f32;
recent_avg < 10.0 && self.get_cpu_volatility() < 5.0
}
/// Calculate optimal polling interval based on system conditions
fn calculate_optimal_interval(
&self,
config: &AppConfig,
on_battery: bool,
) -> Result<u64, ControlError> {
let params = IntervalParams {
base_interval: config.daemon.poll_interval_sec,
min_interval: config.daemon.min_poll_interval_sec,
max_interval: config.daemon.max_poll_interval_sec,
cpu_volatility: self.get_cpu_volatility(),
temp_volatility: self.get_temperature_volatility(),
battery_discharge_rate: self.battery_discharge_rate,
last_user_activity: self.last_user_activity.elapsed(),
is_system_idle: self.is_system_idle(),
on_battery,
};
compute_new(&params, self)
}
}
/// Validates that poll interval configuration is consistent
/// Returns Ok if configuration is valid, Err with a descriptive message if invalid
fn validate_poll_intervals(min_interval: u64, max_interval: u64) -> Result<(), ControlError> {
if min_interval < 1 {
return Err(ControlError::InvalidValueError(
"min_interval must be ≥ 1".to_string(),
));
}
if max_interval < 1 {
return Err(ControlError::InvalidValueError(
"max_interval must be ≥ 1".to_string(),
));
}
if max_interval >= min_interval {
Ok(())
} else {
Err(ControlError::InvalidValueError(format!(
"Invalid interval configuration: max_interval ({max_interval}) is less than min_interval ({min_interval})"
)))
}
}
/// Run the daemon
pub fn run_daemon(config: AppConfig, verbose: bool) -> Result<(), AppError> {
// Set effective log level based on config and verbose flag
let effective_log_level = if verbose {
LogLevel::Debug
} else {
config.daemon.log_level
};
// Get the appropriate level filter
let level_filter = match effective_log_level {
LogLevel::Error => LevelFilter::Error,
LogLevel::Warning => LevelFilter::Warn,
LogLevel::Info => LevelFilter::Info,
LogLevel::Debug => LevelFilter::Debug,
};
// Update the log level filter if needed, without re-initializing the logger
log::set_max_level(level_filter);
info!("Starting Watt daemon...");
// Validate critical configuration values before proceeding
if let Err(err) = validate_poll_intervals(
config.daemon.min_poll_interval_sec,
config.daemon.max_poll_interval_sec,
) {
return Err(AppError::Control(err));
}
// Create a flag that will be set to true when a signal is received
let running = Arc::new(AtomicBool::new(true));
let r = running.clone();
// Set up signal handlers
ctrlc::set_handler(move || {
info!("Received shutdown signal, exiting...");
r.store(false, Ordering::SeqCst);
})
.map_err(|e| AppError::Generic(format!("Error setting Ctrl-C handler: {e}")))?;
info!(
"Daemon initialized with poll interval: {}s",
config.daemon.poll_interval_sec
);
// Set up stats file if configured
if let Some(stats_path) = &config.daemon.stats_file_path {
info!("Stats will be written to: {stats_path}");
}
// Variables for adaptive polling
// Make sure that the poll interval is *never* zero to prevent a busy loop
let mut current_poll_interval = config.daemon.poll_interval_sec.max(1);
if config.daemon.poll_interval_sec == 0 {
warn!("Poll interval is set to zero in config, using 1s minimum to prevent a busy loop");
}
let mut system_history = SystemHistory::default();
// Main loop
while running.load(Ordering::SeqCst) {
let start_time = Instant::now();
match monitor::collect_system_report(&config) {
Ok(report) => {
debug!("Collected system report, applying settings...");
// Store the current state before updating history
let previous_state = system_history.current_state.clone();
// Update system history with new data
system_history.update(&report);
// Update the stats file if configured
if let Some(stats_path) = &config.daemon.stats_file_path {
if let Err(e) = write_stats_file(stats_path, &report) {
error!("Failed to write stats file: {e}");
}
}
match engine::determine_and_apply_settings(&report, &config, None) {
Ok(()) => {
debug!("Successfully applied system settings");
// If system state changed, log the new state
if system_history.current_state != previous_state {
info!(
"System state changed to: {:?}",
system_history.current_state
);
}
}
Err(e) => {
error!("Error applying system settings: {e}");
}
}
// Check if we're on battery
let on_battery = !report.batteries.is_empty()
&& report.batteries.first().is_some_and(|b| !b.ac_connected);
// Calculate optimal polling interval if adaptive polling is enabled
if config.daemon.adaptive_interval {
match system_history.calculate_optimal_interval(&config, on_battery) {
Ok(optimal_interval) => {
// Store the new interval
system_history.last_computed_interval = Some(optimal_interval);
debug!("Recalculated optimal interval: {optimal_interval}s");
// Don't change the interval too dramatically at once
match optimal_interval.cmp(&current_poll_interval) {
std::cmp::Ordering::Greater => {
current_poll_interval =
(current_poll_interval + optimal_interval) / 2;
}
std::cmp::Ordering::Less => {
current_poll_interval = current_poll_interval
- ((current_poll_interval - optimal_interval) / 2).max(1);
}
std::cmp::Ordering::Equal => {
// No change needed when they're equal
}
}
}
Err(e) => {
// Log the error and stop the daemon when an invalid configuration is detected
error!("Critical configuration error: {e}");
running.store(false, Ordering::SeqCst);
break;
}
}
// Make sure that we respect the (user) configured min and max limits
current_poll_interval = current_poll_interval.clamp(
config.daemon.min_poll_interval_sec,
config.daemon.max_poll_interval_sec,
);
debug!("Adaptive polling: set interval to {current_poll_interval}s");
} else {
// If adaptive polling is disabled, still apply battery-saving adjustment
if config.daemon.throttle_on_battery && on_battery {
let battery_multiplier = 2; // poll half as often on battery
// We need to make sure `poll_interval_sec` is *at least* 1
// before multiplying.
let safe_interval = config.daemon.poll_interval_sec.max(1);
current_poll_interval = (safe_interval * battery_multiplier)
.min(config.daemon.max_poll_interval_sec);
debug!(
"On battery power, increased poll interval to {current_poll_interval}s"
);
} else {
// Use the configured poll interval
current_poll_interval = config.daemon.poll_interval_sec.max(1);
if config.daemon.poll_interval_sec == 0 {
debug!("Using minimum poll interval of 1s instead of configured 0s");
}
}
}
}
Err(e) => {
error!("Error collecting system report: {e}");
}
}
// Sleep for the remaining time in the poll interval
let elapsed = start_time.elapsed();
let poll_duration = Duration::from_secs(current_poll_interval);
if elapsed < poll_duration {
let sleep_time = poll_duration - elapsed;
debug!("Sleeping for {}s until next cycle", sleep_time.as_secs());
std::thread::sleep(sleep_time);
}
}
info!("Daemon stopped");
Ok(())
}
/// Write current system stats to a file for --stats to read
fn write_stats_file(path: &str, report: &SystemReport) -> Result<(), std::io::Error> {
let mut file = File::create(path)?;
writeln!(file, "timestamp={:?}", report.timestamp)?;
// CPU info
writeln!(file, "governor={:?}", report.cpu_global.current_governor)?;
writeln!(file, "turbo={:?}", report.cpu_global.turbo_status)?;
if let Some(temp) = report.cpu_global.average_temperature_celsius {
writeln!(file, "cpu_temp={temp:.1}")?;
}
// Battery info
if !report.batteries.is_empty() {
let battery = &report.batteries[0];
writeln!(file, "ac_power={}", battery.ac_connected)?;
if let Some(cap) = battery.capacity_percent {
writeln!(file, "battery_percent={cap}")?;
}
}
// System load
writeln!(file, "load_1m={:.2}", report.system_load.load_avg_1min)?;
writeln!(file, "load_5m={:.2}", report.system_load.load_avg_5min)?;
writeln!(file, "load_15m={:.2}", report.system_load.load_avg_15min)?;
Ok(())
}
/// Simplified system state used for determining when to adjust polling interval
#[derive(Debug, PartialEq, Eq, Clone, Hash, Default)]
enum SystemState {
#[default]
Unknown,
OnAC,
OnBattery,
HighLoad,
LowLoad,
HighTemp,
Idle,
}
/// Determine the current system state for adaptive polling
fn determine_system_state(report: &SystemReport, history: &SystemHistory) -> SystemState {
// Check power state first
if !report.batteries.is_empty() {
if let Some(battery) = report.batteries.first() {
if battery.ac_connected {
return SystemState::OnAC;
}
return SystemState::OnBattery;
}
}
// No batteries means desktop, so always AC
if report.batteries.is_empty() {
return SystemState::OnAC;
}
// Check temperature
if let Some(temp) = report.cpu_global.average_temperature_celsius {
if temp > 80.0 {
return SystemState::HighTemp;
}
}
// Check load first, as high load should take precedence over idle state
let avg_load = report.system_load.load_avg_1min;
if avg_load > 3.0 {
return SystemState::HighLoad;
}
// Check idle state only if we don't have high load
if history.is_system_idle() {
return SystemState::Idle;
}
// Check for low load
if avg_load < 0.5 {
return SystemState::LowLoad;
}
// Default case
SystemState::Unknown
}