1
Fork 0
mirror of https://github.com/RGBCube/uutils-coreutils synced 2025-07-29 12:07:46 +00:00

seq: Parse integral and fractional number of digits in the same function

A lot of the code can be shared, and parsing is quite straightforward
as we know that the digit is somewhat valid.
This commit is contained in:
Nicolas Boichat 2025-03-22 20:03:29 +01:00 committed by Daniel Hofstetter
parent 77d66bab47
commit 27efb9eff4
3 changed files with 57 additions and 251 deletions

View file

@ -1,206 +0,0 @@
// This file is part of the uutils coreutils package.
//
// For the full copyright and license information, please view the LICENSE
// file that was distributed with this source code.
// spell-checker:ignore extendedbigdecimal bigdecimal hexdigit numberparse
// TODO: Rewrite this
// Detect number precision similar to GNU coreutils. Refer to scan_arg in seq.c. There are still
// some differences from the GNU version, but this should be sufficient to test the idea.
pub fn parse_precision(s: &str) -> Option<usize> {
let hex_index = s.find(['x', 'X']);
let point_index = s.find('.');
if hex_index.is_some() {
// Hex value. Returns:
// - 0 for a hexadecimal integer (filled above)
// - None for a hexadecimal floating-point number (the default value of precision)
let power_index = s.find(['p', 'P']);
if point_index.is_none() && power_index.is_none() {
// No decimal point and no 'p' (power) => integer => precision = 0
return Some(0);
} else {
return None;
}
}
// This is a decimal floating point. The precision depends on two parameters:
// - the number of fractional digits
// - the exponent
// Let's detect the number of fractional digits
let fractional_length = if let Some(point_index) = point_index {
s[point_index + 1..]
.chars()
.take_while(|c| c.is_ascii_digit())
.count()
} else {
0
};
let mut precision = Some(fractional_length);
// Let's update the precision if exponent is present
if let Some(exponent_index) = s.find(['e', 'E']) {
let exponent_value: i32 = s[exponent_index + 1..].parse().unwrap_or(0);
if exponent_value < 0 {
precision = precision.map(|p| p + exponent_value.unsigned_abs() as usize);
} else {
precision = precision.map(|p| p - p.min(exponent_value as usize));
}
}
precision
}
/* TODO: move tests
#[cfg(test)]
mod tests {
use super::{parse_number, parse_precision};
use crate::{ExtendedBigDecimal, numberparse::ParseNumberError};
use bigdecimal::BigDecimal;
use num_traits::ToPrimitive;
fn parse_big_decimal(s: &str) -> Result<BigDecimal, ParseNumberError> {
match parse_number(s)?.number {
ExtendedBigDecimal::BigDecimal(bd) => Ok(bd),
_ => Err(ParseNumberError::Float),
}
}
fn parse_f64(s: &str) -> Result<f64, ParseNumberError> {
parse_big_decimal(s)?
.to_f64()
.ok_or(ParseNumberError::Float)
}
#[test]
fn test_parse_precise_number_case_insensitive() {
assert_eq!(parse_f64("0x1P1").unwrap(), 2.0);
assert_eq!(parse_f64("0x1p1").unwrap(), 2.0);
}
#[test]
fn test_parse_precise_number_plus_minus_prefixes() {
assert_eq!(parse_f64("+0x1p1").unwrap(), 2.0);
assert_eq!(parse_f64("-0x1p1").unwrap(), -2.0);
}
#[test]
fn test_parse_precise_number_power_signs() {
assert_eq!(parse_f64("0x1p1").unwrap(), 2.0);
assert_eq!(parse_f64("0x1p+1").unwrap(), 2.0);
assert_eq!(parse_f64("0x1p-1").unwrap(), 0.5);
}
#[test]
fn test_parse_precise_number_hex() {
assert_eq!(parse_f64("0xd.dp-1").unwrap(), 6.90625);
}
#[test]
fn test_parse_precise_number_no_power() {
assert_eq!(parse_f64("0x123.a").unwrap(), 291.625);
}
#[test]
fn test_parse_precise_number_no_fractional() {
assert_eq!(parse_f64("0x333p-4").unwrap(), 51.1875);
}
#[test]
fn test_parse_precise_number_no_integral() {
assert_eq!(parse_f64("0x.9").unwrap(), 0.5625);
assert_eq!(parse_f64("0x.9p2").unwrap(), 2.25);
}
#[test]
fn test_parse_precise_number_from_valid_values() {
assert_eq!(parse_f64("0x1p1").unwrap(), 2.0);
assert_eq!(parse_f64("+0x1p1").unwrap(), 2.0);
assert_eq!(parse_f64("-0x1p1").unwrap(), -2.0);
assert_eq!(parse_f64("0x1p-1").unwrap(), 0.5);
assert_eq!(parse_f64("0x1.8").unwrap(), 1.5);
assert_eq!(parse_f64("-0x1.8").unwrap(), -1.5);
assert_eq!(parse_f64("0x1.8p2").unwrap(), 6.0);
assert_eq!(parse_f64("0x1.8p+2").unwrap(), 6.0);
assert_eq!(parse_f64("0x1.8p-2").unwrap(), 0.375);
assert_eq!(parse_f64("0x.8").unwrap(), 0.5);
assert_eq!(parse_f64("0x10p0").unwrap(), 16.0);
assert_eq!(parse_f64("0x0.0").unwrap(), 0.0);
assert_eq!(parse_f64("0x0p0").unwrap(), 0.0);
assert_eq!(parse_f64("0x0.0p0").unwrap(), 0.0);
assert_eq!(parse_f64("-0x.1p-3").unwrap(), -0.0078125);
assert_eq!(parse_f64("-0x.ep-3").unwrap(), -0.109375);
}
#[test]
fn test_parse_float_from_invalid_values() {
let expected_error = ParseNumberError::Float;
assert_eq!(parse_f64("").unwrap_err(), expected_error);
assert_eq!(parse_f64("1").unwrap_err(), expected_error);
assert_eq!(parse_f64("1p").unwrap_err(), expected_error);
assert_eq!(parse_f64("0x").unwrap_err(), expected_error);
assert_eq!(parse_f64("0xG").unwrap_err(), expected_error);
assert_eq!(parse_f64("0xp").unwrap_err(), expected_error);
assert_eq!(parse_f64("0xp3").unwrap_err(), expected_error);
assert_eq!(parse_f64("0x1").unwrap_err(), expected_error);
assert_eq!(parse_f64("0x1.").unwrap_err(), expected_error);
assert_eq!(parse_f64("0x1p").unwrap_err(), expected_error);
assert_eq!(parse_f64("0x1p+").unwrap_err(), expected_error);
assert_eq!(parse_f64("-0xx1p1").unwrap_err(), expected_error);
assert_eq!(parse_f64("0x1.k").unwrap_err(), expected_error);
assert_eq!(parse_f64("0x1").unwrap_err(), expected_error);
assert_eq!(parse_f64("-0x1pa").unwrap_err(), expected_error);
assert_eq!(parse_f64("0x1.1pk").unwrap_err(), expected_error);
assert_eq!(parse_f64("0x1.8p2z").unwrap_err(), expected_error);
assert_eq!(parse_f64("0x1p3.2").unwrap_err(), expected_error);
assert_eq!(parse_f64("-0x.ep-3z").unwrap_err(), expected_error);
}
#[test]
fn test_parse_precise_number_count_digits() {
let precise_num = parse_number("0x1.2").unwrap(); // 1.125 decimal
assert_eq!(precise_num.num_integral_digits, 1);
assert_eq!(precise_num.num_fractional_digits, 3);
let precise_num = parse_number("-0x1.2").unwrap(); // -1.125 decimal
assert_eq!(precise_num.num_integral_digits, 2);
assert_eq!(precise_num.num_fractional_digits, 3);
let precise_num = parse_number("0x123.8").unwrap(); // 291.5 decimal
assert_eq!(precise_num.num_integral_digits, 3);
assert_eq!(precise_num.num_fractional_digits, 1);
let precise_num = parse_number("-0x123.8").unwrap(); // -291.5 decimal
assert_eq!(precise_num.num_integral_digits, 4);
assert_eq!(precise_num.num_fractional_digits, 1);
}
#[test]
fn test_parse_precision_valid_values() {
assert_eq!(parse_precision("1"), Some(0));
assert_eq!(parse_precision("0x1"), Some(0));
assert_eq!(parse_precision("0x1.1"), None);
assert_eq!(parse_precision("0x1.1p2"), None);
assert_eq!(parse_precision("0x1.1p-2"), None);
assert_eq!(parse_precision(".1"), Some(1));
assert_eq!(parse_precision("1.1"), Some(1));
assert_eq!(parse_precision("1.12"), Some(2));
assert_eq!(parse_precision("1.12345678"), Some(8));
assert_eq!(parse_precision("1.12345678e-3"), Some(11));
assert_eq!(parse_precision("1.1e-1"), Some(2));
assert_eq!(parse_precision("1.1e-3"), Some(4));
}
#[test]
fn test_parse_precision_invalid_values() {
// Just to make sure it doesn't crash on incomplete values/bad format
// Good enough for now.
assert_eq!(parse_precision("1."), Some(0));
assert_eq!(parse_precision("1e"), Some(0));
assert_eq!(parse_precision("1e-"), Some(0));
assert_eq!(parse_precision("1e+"), Some(0));
assert_eq!(parse_precision("1em"), Some(0));
}
}
*/

View file

@ -9,11 +9,9 @@
//! [`PreciseNumber`] struct.
use std::str::FromStr;
use bigdecimal::BigDecimal;
use num_traits::Zero;
use uucore::format::num_parser::{ExtendedParser, ExtendedParserError};
use crate::{hexadecimalfloat, number::PreciseNumber};
use crate::number::PreciseNumber;
use uucore::format::ExtendedBigDecimal;
/// An error returned when parsing a number fails.
@ -23,10 +21,11 @@ pub enum ParseNumberError {
Nan,
}
// Compute the number of integral digits in input string. We know that the
// string has already been parsed correctly, so we don't need to be too
// careful.
fn compute_num_integral_digits(input: &str, _number: &BigDecimal) -> usize {
// Compute the number of integral and fractional digits in input string,
// and wrap the result in a PreciseNumber.
// We know that the string has already been parsed correctly, so we don't
// need to be too careful.
fn compute_num_digits(input: &str, ebd: ExtendedBigDecimal) -> PreciseNumber {
let input = input.to_lowercase();
let mut input = input.trim_start();
@ -35,9 +34,20 @@ fn compute_num_integral_digits(input: &str, _number: &BigDecimal) -> usize {
input = trimmed;
}
// Integral digits for an hex number is ill-defined.
// Integral digits for any hex number is ill-defined (0 is fine as an output)
// Fractional digits for an floating hex number is ill-defined, return None
// as we'll totally ignore that number for precision computations.
// Still return 0 for hex integers though.
if input.starts_with("0x") || input.starts_with("-0x") {
return 0;
return PreciseNumber {
number: ebd,
num_integral_digits: 0,
num_fractional_digits: if input.contains(".") || input.contains("p") {
None
} else {
Some(0)
},
};
}
// Split the exponent part, if any
@ -45,17 +55,19 @@ fn compute_num_integral_digits(input: &str, _number: &BigDecimal) -> usize {
debug_assert!(parts.len() <= 2);
// Count all the digits up to `.`, `-` sign is included.
let digits: usize = match parts[0].find(".") {
let (mut int_digits, mut frac_digits) = match parts[0].find(".") {
Some(i) => {
// Cover special case .X and -.X where we behave as if there was a leading 0:
// 0.X, -0.X.
match i {
let int_digits = match i {
0 => 1,
1 if parts[0].starts_with("-") => 2,
_ => i,
}
};
(int_digits, parts[0].len() - i - 1)
}
None => parts[0].len(),
None => (parts[0].len(), 0),
};
// If there is an exponent, reparse that (yes this is not optimal,
@ -63,14 +75,22 @@ fn compute_num_integral_digits(input: &str, _number: &BigDecimal) -> usize {
if parts.len() == 2 {
let exp = parts[1].parse::<i64>().unwrap_or(0);
// For positive exponents, effectively expand the number. Ignore negative exponents.
// Also ignore overflowed exponents (default 0 above).
// Also ignore overflowed exponents (unwrap_or(0)).
if exp > 0 {
digits + exp as usize
int_digits += exp.try_into().unwrap_or(0)
};
frac_digits = if exp < frac_digits as i64 {
// Subtract from i128 to avoid any overflow
(frac_digits as i128 - exp as i128).try_into().unwrap_or(0)
} else {
digits
0
}
} else {
digits
}
PreciseNumber {
number: ebd,
num_integral_digits: int_digits,
num_fractional_digits: Some(frac_digits),
}
}
@ -80,36 +100,29 @@ impl FromStr for PreciseNumber {
type Err = ParseNumberError;
fn from_str(input: &str) -> Result<Self, Self::Err> {
let ebd = match ExtendedBigDecimal::extended_parse(input) {
Ok(ebd) => ebd,
Ok(ebd) => match ebd {
// Handle special values
ExtendedBigDecimal::BigDecimal(_) | ExtendedBigDecimal::MinusZero => {
// TODO: GNU `seq` treats small numbers < 1e-4950 as 0, we could do the same
// to avoid printing senselessly small numbers.
ebd
}
ExtendedBigDecimal::Infinity | ExtendedBigDecimal::MinusInfinity => {
return Ok(PreciseNumber {
number: ebd,
num_integral_digits: 0,
num_fractional_digits: Some(0),
});
}
ExtendedBigDecimal::Nan | ExtendedBigDecimal::MinusNan => {
return Err(ParseNumberError::Nan);
}
},
Err(ExtendedParserError::Underflow(ebd)) => ebd, // Treat underflow as 0
Err(_) => return Err(ParseNumberError::Float),
};
// Handle special values, get a BigDecimal to help digit-counting.
let bd = match ebd {
ExtendedBigDecimal::Infinity | ExtendedBigDecimal::MinusInfinity => {
return Ok(PreciseNumber {
number: ebd,
num_integral_digits: 0,
num_fractional_digits: Some(0),
});
}
ExtendedBigDecimal::Nan | ExtendedBigDecimal::MinusNan => {
return Err(ParseNumberError::Nan);
}
ExtendedBigDecimal::BigDecimal(ref bd) => {
// TODO: `seq` treats small numbers < 1e-4950 as 0, we could do the same
// to avoid printing senselessly small numbers.
bd.clone()
}
ExtendedBigDecimal::MinusZero => BigDecimal::zero(),
};
Ok(PreciseNumber {
number: ebd,
num_integral_digits: compute_num_integral_digits(input, &bd),
num_fractional_digits: hexadecimalfloat::parse_precision(input),
})
Ok(compute_num_digits(input, ebd))
}
}

View file

@ -15,7 +15,6 @@ use uucore::format::{ExtendedBigDecimal, Format, num_format};
use uucore::{format_usage, help_about, help_usage};
mod error;
mod hexadecimalfloat;
// public to allow fuzzing
#[cfg(fuzzing)]