1
Fork 0
mirror of https://github.com/RGBCube/uutils-coreutils synced 2025-07-28 11:37:44 +00:00

Merge pull request #5968 from anastygnome/tsort

tsort refactoring proposal
This commit is contained in:
Sylvestre Ledru 2024-10-19 21:01:46 +02:00 committed by GitHub
commit 9a6f5521b9
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 188 additions and 70 deletions

View file

@ -0,0 +1,64 @@
# Benchmarking `tsort`
<!-- spell-checker:ignore (words) randint tsort DAG uu_tsort GNU -->
Much of what makes `tsort` fast is the efficiency of its algorithm and implementation for topological sorting.
Our implementation of `tsort` also outputs a cycle whenever such ordering does not exist, just like GNU `tsort`.
## Strategies
To test `tsort`'s performance for its nominal use case, we need to test it with a DAG. One of the worst cases is when all nodes are just representing a succession of independent steps.
We should also test cycle detection for good measure.
### Random acyclic graph (DAG)
This will output a DAG composed of 1 million pairs of edges between nodes numbered from 0 to 10,000, ensuring that the graph is acyclic by always assigning the edge with the smallest id to the node with the highest one.
```python
import random
N = 10000
for i in range(100*N):
a = random.randint(0, N)
b = random.randint(0, N)
print(f"{min(a, b)} {max(a, b)}")
```
### Random graph with cycles
The following will output a graph with multiples edges, it also allows some degree of tuning to test different cases.
```python
import random
# Parameters for the graph
num_nodes = 100
num_edges = 150
cycle_percentage = 0.10
max_cycle_size = 6
num_cycles = int(num_edges * cycle_percentage)
for _ in range(num_edges - num_cycles):
a = random.randint(0, num_nodes)
b = random.randint(0, num_nodes)
print(f"{a} {b}")
for _ in range(num_cycles):
cycle_size = random.randint(3, max_cycle_size)
cycle_nodes = random.sample(range(num_nodes), cycle_size)
for i in range(cycle_size):
print(f"{cycle_nodes[i]} {cycle_nodes[(i + 1) % cycle_size]}")
```
## Running Benchmarks
The above scripts will output the generated graphs to the standard output. They can therefore be used directly as tests. In order to run a Benchmark, the output should be redirected to a file.
Use [`hyperfine`](https://github.com/sharkdp/hyperfine) to compare the performance of different `tsort` versions. For example, you can compare the performance of GNU `tsort` and another implementation with the following command:
```sh
hyperfine 'tsort random_graph.txt' 'uu_tsort random_graph.txt'
```
## Note
Benchmark results from the above scripts are fuzzy and change from run to run unless a seed is set.

View file

@ -2,8 +2,10 @@
//
// For the full copyright and license information, please view the LICENSE
// file that was distributed with this source code.
//spell-checker:ignore TAOCP
use clap::{crate_version, Arg, Command};
use std::collections::{BTreeMap, BTreeSet};
use std::collections::{HashMap, HashSet, VecDeque};
use std::fmt::Write;
use std::fs::File;
use std::io::{stdin, BufReader, Read};
use std::path::Path;
@ -45,7 +47,7 @@ pub fn uumain(args: impl uucore::Args) -> UResult<()> {
let mut input_buffer = String::new();
reader.read_to_string(&mut input_buffer)?;
let mut g = Graph::new();
let mut g = Graph::default();
for line in input_buffer.lines() {
let tokens: Vec<_> = line.split_whitespace().collect();
@ -68,22 +70,26 @@ pub fn uumain(args: impl uucore::Args) -> UResult<()> {
}
}
g.run_tsort();
if !g.is_acyclic() {
return Err(USimpleError::new(
1,
format!("{input}, input contains a loop:"),
));
match g.run_tsort() {
Err(cycle) => {
let mut error_message = format!(
"{}: {}: input contains a loop:\n",
uucore::util_name(),
input
);
for node in &cycle {
writeln!(error_message, "{}: {}", uucore::util_name(), node).unwrap();
}
eprint!("{}", error_message);
println!("{}", cycle.join("\n"));
Err(USimpleError::new(1, ""))
}
Ok(ordering) => {
println!("{}", ordering.join("\n"));
Ok(())
}
}
for x in &g.result {
println!("{x}");
}
Ok(())
}
pub fn uu_app() -> Command {
Command::new(uucore::util_name())
.version(crate_version!())
@ -100,77 +106,125 @@ pub fn uu_app() -> Command {
// We use String as a representation of node here
// but using integer may improve performance.
struct Node<'input> {
successor_names: Vec<&'input str>,
predecessor_count: usize,
}
impl<'input> Node<'input> {
fn new() -> Self {
Node {
successor_names: Vec::new(),
predecessor_count: 0,
}
}
fn add_successor(&mut self, successor_name: &'input str) {
self.successor_names.push(successor_name);
}
}
#[derive(Default)]
struct Graph<'input> {
in_edges: BTreeMap<&'input str, BTreeSet<&'input str>>,
out_edges: BTreeMap<&'input str, Vec<&'input str>>,
result: Vec<&'input str>,
nodes: HashMap<&'input str, Node<'input>>,
}
impl<'input> Graph<'input> {
fn new() -> Self {
Self::default()
}
fn has_node(&self, n: &str) -> bool {
self.in_edges.contains_key(n)
}
fn has_edge(&self, from: &str, to: &str) -> bool {
self.in_edges[to].contains(from)
}
fn init_node(&mut self, n: &'input str) {
self.in_edges.insert(n, BTreeSet::new());
self.out_edges.insert(n, vec![]);
fn add_node(&mut self, name: &'input str) {
self.nodes.entry(name).or_insert_with(Node::new);
}
fn add_edge(&mut self, from: &'input str, to: &'input str) {
if !self.has_node(to) {
self.init_node(to);
}
self.add_node(from);
if from != to {
self.add_node(to);
if !self.has_node(from) {
self.init_node(from);
}
let from_node = self.nodes.get_mut(from).unwrap();
from_node.add_successor(to);
if from != to && !self.has_edge(from, to) {
self.in_edges.get_mut(to).unwrap().insert(from);
self.out_edges.get_mut(from).unwrap().push(to);
let to_node = self.nodes.get_mut(to).unwrap();
to_node.predecessor_count += 1;
}
}
/// Implementation of algorithm T from TAOCP (Don. Knuth), vol. 1.
fn run_tsort(&mut self) -> Result<Vec<&'input str>, Vec<&'input str>> {
let mut result = Vec::with_capacity(self.nodes.len());
// First, we find a node that have no prerequisites (independent nodes)
// If no such node exists, then there is a cycle.
let mut independent_nodes_queue: VecDeque<&'input str> = self
.nodes
.iter()
.filter_map(|(&name, node)| {
if node.predecessor_count == 0 {
Some(name)
} else {
None
}
})
.collect();
independent_nodes_queue.make_contiguous().sort_unstable(); // to make sure the resulting ordering is deterministic we need to order independent nodes
// FIXME: this doesn't comply entirely with the GNU coreutils implementation.
// Kahn's algorithm
// O(|V|+|E|)
fn run_tsort(&mut self) {
let mut start_nodes = vec![];
for (n, edges) in &self.in_edges {
if edges.is_empty() {
start_nodes.push(*n);
}
}
while !start_nodes.is_empty() {
let n = start_nodes.remove(0);
self.result.push(n);
let n_out_edges = self.out_edges.get_mut(&n).unwrap();
#[allow(clippy::explicit_iter_loop)]
for m in n_out_edges.iter() {
let m_in_edges = self.in_edges.get_mut(m).unwrap();
m_in_edges.remove(&n);
// If m doesn't have other in-coming edges add it to start_nodes
if m_in_edges.is_empty() {
start_nodes.push(m);
// we remove each independent node, from the graph, updating each successor predecessor_count variable as we do.
while let Some(name_of_next_node_to_process) = independent_nodes_queue.pop_front() {
result.push(name_of_next_node_to_process);
if let Some(node_to_process) = self.nodes.remove(name_of_next_node_to_process) {
for successor_name in node_to_process.successor_names {
let successor_node = self.nodes.get_mut(successor_name).unwrap();
successor_node.predecessor_count -= 1;
if successor_node.predecessor_count == 0 {
// if we find nodes without any other prerequisites, we add them to the queue.
independent_nodes_queue.push_back(successor_name);
}
}
}
n_out_edges.clear();
}
// if the graph has no cycle (it's a dependency tree), the graph should be empty now, as all nodes have been deleted.
if self.nodes.is_empty() {
Ok(result)
} else {
// otherwise, we detect and show a cycle to the user (as the GNU coreutils implementation does)
Err(self.detect_cycle())
}
}
fn is_acyclic(&self) -> bool {
self.out_edges.values().all(|edge| edge.is_empty())
fn detect_cycle(&self) -> Vec<&'input str> {
let mut visited = HashSet::new();
let mut stack = Vec::with_capacity(self.nodes.len());
for &node in self.nodes.keys() {
if !visited.contains(node) && self.dfs(node, &mut visited, &mut stack) {
return stack;
}
}
unreachable!();
}
fn dfs(
&self,
node: &'input str,
visited: &mut HashSet<&'input str>,
stack: &mut Vec<&'input str>,
) -> bool {
if stack.contains(&node) {
return true;
}
if visited.contains(&node) {
return false;
}
visited.insert(node);
stack.push(node);
if let Some(successor_names) = self.nodes.get(node).map(|n| &n.successor_names) {
for &successor in successor_names {
if self.dfs(successor, visited, stack) {
return true;
}
}
}
stack.pop();
false
}
}