1
Fork 0
mirror of https://github.com/RGBCube/uutils-coreutils synced 2026-01-18 11:11:10 +00:00
uutils-coreutils/src/uu/printf/src/tokenize/sub.rs

416 lines
15 KiB
Rust

//! Sub is a token that represents a
//! segment of the format string that is a substitution
//! it is created by Sub's implementation of the Tokenizer trait
//! Subs which have numeric field chars make use of the num_format
//! submodule
use itertools::{put_back_n, PutBackN};
use std::iter::Peekable;
use std::process::exit;
use std::slice::Iter;
use std::str::Chars;
// use std::collections::HashSet;
use super::num_format::format_field::{FieldType, FormatField};
use super::num_format::num_format;
use super::token;
use super::unescaped_text::UnescapedText;
use crate::cli;
fn err_conv(sofar: &str) {
cli::err_msg(&format!("%{}: invalid conversion specification", sofar));
exit(cli::EXIT_ERR);
}
fn convert_asterisk_arg_int(asterisk_arg: &str) -> isize {
// this is a costly way to parse the
// args used for asterisk values into integers
// from various bases. Actually doing it correctly
// (going through the pipeline to intf, but returning
// the integer instead of writing it to string and then
// back) is on the refactoring TODO
let field_type = FieldType::Intf;
let field_char = 'i';
let field_info = FormatField {
min_width: Some(0),
second_field: Some(0),
orig: &asterisk_arg.to_string(),
field_type: &field_type,
field_char: &field_char,
};
num_format::num_format(&field_info, Some(&asterisk_arg.to_string()))
.unwrap()
.parse::<isize>()
.unwrap()
}
pub enum CanAsterisk<T> {
Fixed(T),
Asterisk,
}
// Sub is a tokenizer which creates tokens
// for substitution segments of a format string
pub struct Sub {
min_width: CanAsterisk<Option<isize>>,
second_field: CanAsterisk<Option<u32>>,
field_char: char,
field_type: FieldType,
orig: String,
}
impl Sub {
pub fn new(
min_width: CanAsterisk<Option<isize>>,
second_field: CanAsterisk<Option<u32>>,
field_char: char,
orig: String,
) -> Sub {
// for more dry printing, field characters are grouped
// in initialization of token.
let field_type = match field_char {
's' | 'b' => FieldType::Strf,
'd' | 'i' | 'u' | 'o' | 'x' | 'X' => FieldType::Intf,
'f' | 'F' => FieldType::Floatf,
'a' | 'A' => FieldType::CninetyNineHexFloatf,
'e' | 'E' => FieldType::Scif,
'g' | 'G' => FieldType::Decf,
'c' => FieldType::Charf,
_ => {
// should be unreachable.
println!("Invalid fieldtype");
exit(cli::EXIT_ERR);
}
};
Sub {
min_width,
second_field,
field_char,
field_type,
orig,
}
}
}
struct SubParser {
min_width_tmp: Option<String>,
min_width_is_asterisk: bool,
past_decimal: bool,
second_field_tmp: Option<String>,
second_field_is_asterisk: bool,
specifiers_found: bool,
field_char: Option<char>,
text_so_far: String,
}
impl SubParser {
fn new() -> SubParser {
SubParser {
min_width_tmp: None,
min_width_is_asterisk: false,
past_decimal: false,
second_field_tmp: None,
second_field_is_asterisk: false,
specifiers_found: false,
field_char: None,
text_so_far: String::new(),
}
}
fn from_it(
it: &mut PutBackN<Chars>,
args: &mut Peekable<Iter<String>>,
) -> Option<Box<dyn token::Token>> {
let mut parser = SubParser::new();
if parser.sub_vals_retrieved(it) {
let t: Box<dyn token::Token> = SubParser::build_token(parser);
t.print(args);
Some(t)
} else {
None
}
}
fn build_token(parser: SubParser) -> Box<dyn token::Token> {
// not a self method so as to allow move of subparser vals.
// return new Sub struct as token
let t: Box<dyn token::Token> = Box::new(Sub::new(
if parser.min_width_is_asterisk {
CanAsterisk::Asterisk
} else {
CanAsterisk::Fixed(parser.min_width_tmp.map(|x| x.parse::<isize>().unwrap()))
},
if parser.second_field_is_asterisk {
CanAsterisk::Asterisk
} else {
CanAsterisk::Fixed(parser.second_field_tmp.map(|x| x.parse::<u32>().unwrap()))
},
parser.field_char.unwrap(),
parser.text_so_far,
));
t
}
fn sub_vals_retrieved(&mut self, it: &mut PutBackN<Chars>) -> bool {
if !SubParser::successfully_eat_prefix(it, &mut self.text_so_far) {
return false;
}
// this fn in particular is much longer than it needs to be
// .could get a lot
// of code savings just by cleaning it up. shouldn't use a regex
// though, as we want to mimic the original behavior of printing
// the field as interpreted up until the error in the field.
let mut legal_fields = vec![
// 'a', 'A', //c99 hex float implementation not yet complete
'b', 'c', 'd', 'e', 'E', 'f', 'F', 'g', 'G', 'i', 'o', 's', 'u', 'x', 'X',
];
let mut specifiers = vec!['h', 'j', 'l', 'L', 't', 'z'];
legal_fields.sort();
specifiers.sort();
// divide substitution from %([0-9]+)?(.[0-9+])?([a-zA-Z])
// into min_width, second_field, field_char
for ch in it {
self.text_so_far.push(ch);
match ch as char {
'-' | '*' | '0'..='9' => {
if !self.past_decimal {
if self.min_width_is_asterisk || self.specifiers_found {
err_conv(&self.text_so_far);
}
if self.min_width_tmp.is_none() {
self.min_width_tmp = Some(String::new());
}
match self.min_width_tmp.as_mut() {
Some(x) => {
if (ch == '-' || ch == '*') && !x.is_empty() {
err_conv(&self.text_so_far);
}
if ch == '*' {
self.min_width_is_asterisk = true;
}
x.push(ch);
}
None => {
panic!("should be unreachable");
}
}
} else {
// second field should never have a
// negative value
if self.second_field_is_asterisk || ch == '-' || self.specifiers_found {
err_conv(&self.text_so_far);
}
if self.second_field_tmp.is_none() {
self.second_field_tmp = Some(String::new());
}
match self.second_field_tmp.as_mut() {
Some(x) => {
if ch == '*' && !x.is_empty() {
err_conv(&self.text_so_far);
}
if ch == '*' {
self.second_field_is_asterisk = true;
}
x.push(ch);
}
None => {
panic!("should be unreachable");
}
}
}
}
'.' => {
if !self.past_decimal {
self.past_decimal = true;
} else {
err_conv(&self.text_so_far);
}
}
x if legal_fields.binary_search(&x).is_ok() => {
self.field_char = Some(ch);
self.text_so_far.push(ch);
break;
}
x if specifiers.binary_search(&x).is_ok() => {
if !self.past_decimal {
self.past_decimal = true;
}
if !self.specifiers_found {
self.specifiers_found = true;
}
}
_ => {
err_conv(&self.text_so_far);
}
}
}
if self.field_char.is_none() {
err_conv(&self.text_so_far);
}
let field_char_retrieved = self.field_char.unwrap();
if self.past_decimal && self.second_field_tmp.is_none() {
self.second_field_tmp = Some(String::from("0"));
}
self.validate_field_params(field_char_retrieved);
// if the dot is provided without a second field
// printf interprets it as 0.
if let Some(x) = self.second_field_tmp.as_mut() {
if x.is_empty() {
self.min_width_tmp = Some(String::from("0"));
}
}
true
}
fn successfully_eat_prefix(it: &mut PutBackN<Chars>, text_so_far: &mut String) -> bool {
// get next two chars,
// if they're '%%' we're not tokenizing it
// else put chars back
let preface = it.next();
let n_ch = it.next();
if preface == Some('%') && n_ch != Some('%') {
match n_ch {
Some(x) => {
it.put_back(x);
true
}
None => {
text_so_far.push('%');
err_conv(&text_so_far);
false
}
}
} else {
if let Some(x) = n_ch {
it.put_back(x)
};
if let Some(x) = preface {
it.put_back(x)
};
false
}
}
fn validate_field_params(&self, field_char: char) {
// check for illegal combinations here when possible vs
// on each application so we check less per application
// to do: move these checks to Sub::new
if (field_char == 's' && self.min_width_tmp == Some(String::from("0")))
|| (field_char == 'c'
&& (self.min_width_tmp == Some(String::from("0")) || self.past_decimal))
|| (field_char == 'b'
&& (self.min_width_tmp.is_some()
|| self.past_decimal
|| self.second_field_tmp.is_some()))
{
err_conv(&self.text_so_far);
}
}
}
impl token::Tokenizer for Sub {
fn from_it(
it: &mut PutBackN<Chars>,
args: &mut Peekable<Iter<String>>,
) -> Option<Box<dyn token::Token>> {
SubParser::from_it(it, args)
}
}
impl token::Token for Sub {
fn print(&self, pf_args_it: &mut Peekable<Iter<String>>) {
let field = FormatField {
min_width: match self.min_width {
CanAsterisk::Fixed(x) => x,
CanAsterisk::Asterisk => {
match pf_args_it.next() {
// temporary, use intf.rs instead
Some(x) => Some(convert_asterisk_arg_int(x)),
None => Some(0),
}
}
},
second_field: match self.second_field {
CanAsterisk::Fixed(x) => x,
CanAsterisk::Asterisk => {
match pf_args_it.next() {
// temporary, use intf.rs instead
Some(x) => {
let result = convert_asterisk_arg_int(x);
if result < 0 {
None
} else {
Some(result as u32)
}
}
None => Some(0),
}
}
},
field_char: &self.field_char,
field_type: &self.field_type,
orig: &self.orig,
};
let pf_arg = pf_args_it.next();
// minimum width is handled independently of actual
// field char
let pre_min_width_opt: Option<String> = match *field.field_type {
// if %s just return arg
// if %b use UnescapedText module's unescaping-fn
// if %c return first char of arg
FieldType::Strf | FieldType::Charf => {
match pf_arg {
Some(arg_string) => {
match *field.field_char {
's' => Some(match field.second_field {
Some(max) => String::from(&arg_string[..max as usize]),
None => arg_string.clone(),
}),
'b' => {
let mut a_it = put_back_n(arg_string.chars());
UnescapedText::from_it_core(&mut a_it, true);
None
}
// for 'c': get iter of string vals,
// get opt<char> of first val
// and map it to opt<String>
/* 'c' | */
_ => arg_string.chars().next().map(|x| x.to_string()),
}
}
None => None,
}
}
_ => {
// non string/char fields are delegated to num_format
num_format::num_format(&field, pf_arg)
}
};
if let Some(pre_min_width) = pre_min_width_opt {
// if have a string, print it, ensuring minimum width is met.
print!(
"{}",
match field.min_width {
Some(min_width) => {
let diff: isize = min_width.abs() as isize - pre_min_width.len() as isize;
if diff > 0 {
let mut final_str = String::new();
// definitely more efficient ways
// to do this.
let pad_before = min_width > 0;
if !pad_before {
final_str.push_str(&pre_min_width);
}
for _ in 0..diff {
final_str.push(' ');
}
if pad_before {
final_str.push_str(&pre_min_width);
}
final_str
} else {
pre_min_width
}
}
None => pre_min_width,
}
);
}
}
}