1
Fork 0
mirror of https://github.com/RGBCube/uutils-coreutils synced 2026-01-15 09:41:07 +00:00
uutils-coreutils/src/factor/factor.rs
2016-01-06 09:36:20 +01:00

201 lines
5.2 KiB
Rust

#![crate_name = "uu_factor"]
/*
* This file is part of the uutils coreutils package.
*
* (c) T. Jameson Little <t.jameson.little@gmail.com>
* (c) Wiktor Kuropatwa <wiktor.kuropatwa@gmail.com>
* 20150223 added Pollard rho method implementation
* (c) kwantam <kwantam@gmail.com>
* 20150429 sped up trial division by adding table of prime inverses
*
* For the full copyright and license information, please view the LICENSE file
* that was distributed with this source code.
*/
extern crate getopts;
extern crate libc;
extern crate rand;
#[macro_use]
extern crate uucore;
use numeric::*;
use prime_table::P_INVS_U64;
use rand::distributions::{Range, IndependentSample};
use std::cmp::{max, min};
use std::io::{stdin, BufRead, BufReader, Write};
use std::num::Wrapping;
use std::mem::swap;
mod numeric;
mod prime_table;
static NAME: &'static str = "factor";
static VERSION: &'static str = env!("CARGO_PKG_VERSION");
fn rho_pollard_pseudorandom_function(x: u64, a: u64, b: u64, num: u64) -> u64 {
if num < 1 << 63 {
(sm_mul(a, sm_mul(x, x, num), num) + b) % num
} else {
big_add(big_mul(a, big_mul(x, x, num), num), b, num)
}
}
fn gcd(mut a: u64, mut b: u64) -> u64 {
while b > 0 {
a %= b;
swap(&mut a, &mut b);
}
a
}
fn rho_pollard_find_divisor(num: u64) -> u64 {
let range = Range::new(1, num);
let mut rng = rand::weak_rng();
let mut x = range.ind_sample(&mut rng);
let mut y = x;
let mut a = range.ind_sample(&mut rng);
let mut b = range.ind_sample(&mut rng);
loop {
x = rho_pollard_pseudorandom_function(x, a, b, num);
y = rho_pollard_pseudorandom_function(y, a, b, num);
y = rho_pollard_pseudorandom_function(y, a, b, num);
let d = gcd(num, max(x, y) - min(x, y));
if d == num {
// Failure, retry with diffrent function
x = range.ind_sample(&mut rng);
y = x;
a = range.ind_sample(&mut rng);
b = range.ind_sample(&mut rng);
} else if d > 1 {
return d;
}
}
}
fn rho_pollard_factor(num: u64, factors: &mut Vec<u64>) {
if is_prime(num) {
factors.push(num);
return;
}
let divisor = rho_pollard_find_divisor(num);
rho_pollard_factor(divisor, factors);
rho_pollard_factor(num / divisor, factors);
}
fn table_division(mut num: u64, factors: &mut Vec<u64>) {
if num < 2 {
return;
}
while num % 2 == 0 {
num /= 2;
factors.push(2);
}
if num == 1 {
return;
}
if is_prime(num) {
factors.push(num);
return;
}
for &(prime, inv, ceil) in P_INVS_U64 {
if num == 1 {
break;
}
// inv = prime^-1 mod 2^64
// ceil = floor((2^64-1) / prime)
// if (num * inv) mod 2^64 <= ceil, then prime divides num
// See http://math.stackexchange.com/questions/1251327/
// for a nice explanation.
loop {
let Wrapping(x) = Wrapping(num) * Wrapping(inv); // x = num * inv mod 2^64
if x <= ceil {
num = x;
factors.push(prime);
if is_prime(num) {
factors.push(num);
return;
}
} else {
break;
}
}
}
// do we still have more factoring to do?
// Decide whether to use Pollard Rho or slow divisibility based on
// number's size:
//if num >= 1 << 63 {
// number is too big to use rho pollard without overflowing
//trial_division_slow(num, factors);
//} else if num > 1 {
// number is still greater than 1, but not so big that we have to worry
rho_pollard_factor(num, factors);
//}
}
fn print_factors(num: u64) {
print!("{}:", num);
let mut factors = Vec::new();
// we always start with table division, and go from there
table_division(num, &mut factors);
factors.sort();
for fac in &factors {
print!(" {}", fac);
}
println!("");
}
fn print_factors_str(num_str: &str) {
if let Err(e) = num_str.parse::<u64>().and_then(|x| Ok(print_factors(x))) {
show_warning!("{}: {}", num_str, e);
}
}
pub fn uumain(args: Vec<String>) -> i32 {
let mut opts = getopts::Options::new();
opts.optflag("h", "help", "show this help message");
opts.optflag("v", "version", "print the version and exit");
let matches = match opts.parse(&args[1..]) {
Ok(m) => m,
Err(f) => crash!(1, "Invalid options\n{}", f)
};
if matches.opt_present("help") {
let msg = format!("{0} {1}
Usage:
\t{0} [NUMBER]...
\t{0} [OPTION]
Print the prime factors of the given number(s). If none are specified,
read from standard input.", NAME, VERSION);
print!("{}", opts.usage(&msg));
return 1;
}
if matches.opt_present("version") {
println!("{} {}", NAME, VERSION);
return 0;
}
if matches.free.is_empty() {
for line in BufReader::new(stdin()).lines() {
for number in line.unwrap().split_whitespace() {
print_factors_str(number);
}
}
} else {
for num_str in &matches.free {
print_factors_str(num_str);
}
}
0
}