Normally, assigning to e.g document.body.onload will forward to
window.onload. However, in a detached DOM tree, there is no associated
window, so we have nowhere to forward to, making this a no-op.
The bulk of this change is making Document::window() return a nullable
pointer, as documents created by DOMParser or DOMImplementation do not
have an associated window object, and so must be able to return null
from here.
Now that all input events are handled by LibWebView, replace the IPCs
which send the fields of Web::KeyEvent / Web::MouseEvent individually
with one IPC per event type (key or mouse).
We can also replace the ad-hoc queued input structure with a smaller
struct that simply holds the tranferred Web::KeyEvent / Web::MouseEvent.
In the future, we can also adapt Web::EventHandler to use these structs.
All of this error propogation came from a single call to
HashMap::try_ensure_capacity! As part of the ongoing effort to ignore
small allocation failures, lets just assert this works. This has the
nice side-effect of propogating out to a few other classes.
We had previous implemented some plumbing for file input elements in
commit 636602a54e.
This implements the return path for chromes to inform WebContent of the
file(s) the user selected. This patch includes a dummy implementation
for headless-browser to enable testing.
Resolves a performance regression from
8ba18dfd40, where moving paint scheduling
to `EventLoop::process()` led to unnecessary repaints.
This update introduces a flag to trigger repaints only when necessary,
addressing the issue where repaints previously occurred with each event
loop process, irrespective of actual changes.
Attribute values may contain HTML, and may contain invalid HTML at that.
If the latter occurs, let's not generate invalid Inspector HTML when we
embed the attribute values as data attributes. Instead, cache the values
in the InspectorClient, and embed just a lookup index into the HTML.
This also nicely reduces the size of the generated HTML. The Inspector
on https://github.com/SerenityOS/serenity reduces from 2.3MB to 1.9MB
(about 318KB, or 13.8%).
In this change, updating layout and painting are moved to the EventLoop
processing steps. This modification allows the addition of resize
observation dispatching that needs to happen in event loop processing
steps and must occur in the following order relative to layout and
painting:
1. Update layout.
2. Gather and broadcast resize observations.
3. Paint.
Painting command executors are defined within the "Painting" namespace,
allowing us to remove this prefix from their names.
This commit performs the following renamings:
- Painting::PaintingCommandExecutor to Painting::CommandExecutor
- Painting::PaintingCommandExecutorCPU to Painting::CommandExecutorCPU
- Painting::PaintingCommandExecutorGPU to Painting::CommandExecutorGPU
Separating the recorder list from the painter will allow us to save it
for later execution without carrying along the painter's state. This
will be useful once we have a separate thread for executing painting
commands, to which we will have to transfer commands from the main
thread.
Preparation for https://github.com/SerenityOS/serenity/pull/23108
When a tab or nested traversable navigable is closed, there might be
messages still in the pipe from the UI process that we need to
gracefully drop, rather than crash trying to access an invalid pointer.
The IPC layer between chromes and LibWeb now understands that multiple
top level traversables can live in each WebContent process.
This largely mechanical change adds a billion page_id/page_index
arguments to make sure that pages that end up opening new WebViews
through mechanisms like window.open() still work properly with those
extra windows.
This refactoring makes WebContent less aware of LibWeb internals.
The code that initializes paint recording commands now resides in
`Navigable::paint()`. Additionally, we no longer need to reuse
PaintContext across iframes, allowing us to avoid saving and restoring
its state before recursing into an iframe.
Instead of spawning these processes from the WebContent process, we now
create them in the Browser chrome.
Part 1/N of "all processes are owned by the chrome".
Considering an operation like the following:
document.cookie = "cookie=value";
const value = document.cookie;
If the IPC for the cookie setter is asynchronous, the getter can execute
while the browser/SQLServer processes are still handling the setter.
This is often seen when hammering the document with cookie requests.
When the WebContent process has painted to its shared bitmaps, it sends
a synchronous IPC to the browser process to let the chrome paint. It is
synchronous to ensure the WC process doesn't paint onto the backing
bitmap again while it is being displayed.
However, this can cause a crash at exit if the browser process quits
while the WC process is waiting for a response to this IPC.
This patch makes the painting logic asynchronous by letting the browser
process broadcast when it has finished handling the paint IPC. The WC
process will not paint anything again until it receives that message. If
it had tried to repaint while waiting for that message, that paint will
be deferred until it arrives.
These IPCs are different than other IPCs in that we can't just set up a
callback function to be invoked when WebContent sends us the screenshot
data. There are multiple places that would set that callback, and they
would step on each other's toes.
Instead, the screenshot APIs on ViewImplementation now return a Promise
which callers can interact with to receive the screenshot (or an error).
Instead of returning HeapBlock memory to the kernel (or a non-type
specific shared cache), we now keep a BlockAllocator per CellAllocator
and implement "deallocation" by basically informing the kernel that we
don't need the physical memory right now.
This is done with MADV_FREE or MADV_DONTNEED if available, but for other
platforms (including SerenityOS) we munmap and then re-mmap the memory
to achieve the same effect. It's definitely clunky, so I've added a
FIXME about implementing the madvise options on SerenityOS too.
The important outcome of this change is that GC types that use a
type-specific allocator become immune to use-after-free type confusion
attacks, since their virtual addresses will only ever be re-used for
the same exact type again and again.
Fixes#22274
All DOM node mutation IPCs now invoke an async completion IPC after the
DOM is mutated. This allows consolidating where the Inspector updates
its view and the selected DOM node.
This also allows improving the response to removing a DOM node. We would
previously just select the <body> tag after removing a DOM node because
the Inspector client had no idea what node preceded the removed node.
Now the WebContent process can just indicate what that node is. So now
after removing a DOM node, we inspect either its previous sibling (if it
had one) or its parent.
Rename them from "did_get_*" to "did_inspect_*", to correspond to the
request methods "inspect_dom_tree" and "inspect_accessibility_tree". No
functional change, but this makes it a bit easier to stare at IPC files
side-by-side and know which response method corresponds to a request
method at a quick glance.
With this change, instead of applying scroll offsets during the
recording of the painting command list, we do the following:
1. Collect all boxes with scrollable overflow into a PaintContext,
each with an id and the total amount of scrolling offset accumulated
from ancestor scrollable boxes.
2. During the recording phase assign a corresponding scroll_frame_id to
each command that paints content within a scrollable box.
3. Before executing the recorded commands, translate each command that
has a scroll_frame_id by the accumulated scroll offset.
This approach has following advantages:
- Implementing nested scrollables becomes much simpler, as the
recording phase only requires the correct assignment of the nearest
scrollable's scroll_frame_id, while the accumulated offset from
ancestors is applied subsequently.
- The recording of painting commands is not tied to a specific offset
within scrollable boxes, which means in the future, it will be
possible to update the scrolling offset and repaint without the need
to re-record painting commands.
In a bunch of cases, this actually ends up simplifying the code as
to_number will handle something such as:
```
Optional<I> opt;
if constexpr (IsSigned<I>)
opt = view.to_int<I>();
else
opt = view.to_uint<I>();
```
For us.
The main goal here however is to have a single generic number conversion
API between all of the String classes.
With this change, chrome no longer has to ask the WebContent process
to paint the next frame into a specified bitmap. Instead, it allocates
bitmaps and sends them to WebContent, which then lets chrome know when
the painting is done.
This work is a preparation to move the execution of painting commands
into a separate thread. Now, it is much easier to start working on the
next frame while the current one is still rendering. This is because
WebContent does not have to inform chrome that the current frame is
ready before it can request the next frame.
Additionally, as a side bonus, we can now eliminate the
did_invalidate_content_rect and did_change_selection IPC calls. These
were used solely for the purpose of informing chrome that it needed to
request a repaint.