This implements the stop-opacity, fill-opacity, and stroke-opacity
properties (in CSS). This replaces the existing more ad-hoc
fill-opacity attribute handling.
There are a couple of things that went into this:
- We now calculate the intrinsic width/height and aspect ratio of <svg>
elements based on the spec algorithm instead of our previous ad-hoc
guesswork solution.
- Replaced elements with automatic size and intrinsic aspect ratio but
no intrinsic dimensions are now sized with the stretch-fit width
formula.
- We take care to assign both used width and used height to <svg>
elements before running their SVG formatting contexts. This ensures
that the inside SVG content is laid out with knowledge of its
viewport geometry.
- We avoid infinite recursion in tentative_height_for_replaced_element()
by using the already-calculated used width instead of calling the
function that calculates the used width (since that may call us right
back again).
This gives us free error-propagation in Core::command(...) and
HackStudio::ProjectBuilder::for_each_library_dependencies.
The comment about "String will be in the null state" has been misleading
for a long time, so it is removed.
Note that LibTest/Macros.h and therefore the macro TRY_OR_FAIL are not
available, so using these would require some in-depth rework.
release_value_but_fixme_should_propagate_errors should generate a
reasonably obvious hint that the test didn't find some expected file.
Note that I intentionally did not choose MUST(), since it should be a
TRY_OR_FAIL() in some form.
We were performing a check whether source pixels would fall into a
clipped rect too early. Since we already clamp the resulting source
coordinates to the clipped rect, we can just remove this code.
Box sampling is a scaling algorithm that averages all the pixels that
form the source for the target pixel. For example, if you would resize a
9x9 image to 3x3, each target pixel would encompass a 3x3 pixel area in
the source image.
Box sampling is a near perfect scaling algorithm for downscaling. When
upscaling with this algorithm, the result is similar to nearest neighbor
or smooth pixels.
In order to fix this, I also had to reorganize the code so that we
create an independent formatting context even for block-level boxes
that don't have any children. This accidentally improves a table
layout test as well (for empty tables).
Previously FSAC displayed some but not all errors and always
rejected directories and devices. This has led most apps to ignore
response errors in open/save actions or show redundant messages.
Now FSAC displays all errors including fd failures and has the ability
to silence messages for directories, devices and ENOENT, which some
apps handle differently. Silenced directory and device errors now
return files on success.
A request's access mode is now stored in RequestData to format more
accurate error messages from the user's perspective.
Resolved promises don't require callback propagation so they're voided
If linking fails, we throw a JS exception, and if there's no execution
context on the VM stack at that time, we assert in VM::current_realm().
This is a hack to prevent crashing on failed module loads. Long term we
need to rewrite module loading since it has been refactored to share
code differently between HTML and ECMA262.
We were performing a check whether source pixels would fall into a
clipped rect too early. Since we already clamp the resulting source
coordinates to the clipped rect, we can just remove this code.
Box sampling is a scaling algorithm that averages all the pixels that
form the source for the target pixel. For example, if you would resize a
9x9 image to 3x3, each target pixel would encompass a 3x3 pixel area in
the source image.
Box sampling is a near perfect scaling algorithm for downscaling. When
upscaling with this algorithm, the result is similar to nearest neighbor
or smooth pixels.
For `IntRect`, we assume that the right/bottom edge is offset by minus
one. This obviously will not work for `FloatRect`, since those edges are
infinitely small.
Specialize `right()` and `bottom()` and add a `FIXME` to get rid of the
offset in the future.
Adds support for grid items with fixed size paddings. Supporting
percentage paddings will probably require to do second pass of tracks
layout: second pass is needed to recalculate tracks sizes when final
items sizes are known when percentage paddings are already resolved.
This generic stream wrapper performs checksum calculations on all data
passed through it for reading or writing, and is therefore convenient
for calculating checksums while performing normal data input/output, as
well as computing streaming checksums on non-seekable streams.
The implementation of this is naive enough so it can handle all 8-bit
CRC polynomials, of which there are quite a few. The table generation
and update procedure is MSB first, which is backwards from the LSB first
method of CRC32.
This change addresses the incorrect assumption that the available width
inside a grid item is equal to the width of the track it belongs to.
For instance, if a grid item has a width of 200px, the available width
inside that item is also 200px regardless of its column(s) base size.
To solve this issue, it was necessary to move the final resolution of
grid items to occur immediately after the final column track sizes are
determined. By doing so, it becomes possible to obtain correct
available width inside grid items while resolving the row track sizes.
These 2 are an actual separate types of syscalls, so let's stop using
special flags for bind mounting or re-mounting and instead let userspace
calling directly for this kind of actions.