This is (part of) a normative change in the ECMA-262 spec. See:
a9ae96e
This implements just support for resizing ArrayBuffer objects. This does
not implement the SharedArrayBuffer changes, as we do not have enough
support to do so.
When calling `running_execution_context` from other VM APIs, and the
execution context stack is empty, the verification message is inlined
from AK::Vector. Add a specific VERIFY to `running_execution_context` to
help diagnose this issue better.
This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).
This commit is auto-generated:
$ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
Meta Ports Ladybird Tests Kernel)
$ perl -pie 's/\bDeprecatedString\b/ByteString/g;
s/deprecated_string/byte_string/g' $xs
$ clang-format --style=file -i \
$(git diff --name-only | grep \.cpp\|\.h)
$ gn format $(git ls-files '*.gn' '*.gni')
In particular, this patch focuses on:
- Updating the old "import assertions" to the new "import attributes"
- Allowing realms as module import referrer
This allows them to participate in the ownership graph and fixes a
lifetime issue in module loading found by ASAN.
Co-Authored-By: networkException <networkexception@serenityos.org>
Instead of allocating these in a mixture of ways, we now always put
them on the malloc heap, and keep an intrusive linked list of them
that we can iterate for GC marking purposes.
(Instead of MarkedVector<Value>.) This is a step towards not storing
argument lists in MarkedVector<Value> at all. Note that they still end
up in MarkedVectors since that's what ExecutionContext has.
The previous implementation was calling `backtrace()` for every
function call, which is quite slow.
Instead, this implementation provides VM::stack_trace() which unwinds
the native stack, maps it through NativeExecutable::get_source_range
and combines it with source ranges from interpreted call frames.
This patch updates various parts of the script fetching implementation
to match the current specification.
Notably, the implementation of changes to the import assertions /
attributes proposal are not part of this patch(series).
Instead of trying to keep a live reference to the bytecode interpreter's
current instruction stream iterator, we now simply copy the current
iterator whenever pushing to the ExecutionContext stack.
This fixes a stack-use-after-return issue reported by ASAN.
This change introduces a very basic GC graph dumper. The `dump_graph()`
function outputs JSON data that contains information about all nodes in
the graph, including their class types and edges.
Root nodes will have a property indicating their root type or source
location if the root is captured by a SafeFunction. It would be useful
to add source location for other types of roots in the future.
Output JSON dump have following format:
```json
"4908721208": {
"class_name": "Accessor",
"edges": [
"4909298232",
"4909297976"
]
},
"4907520440": {
"root": "SafeFunction Optional Optional.h:137",
"class_name": "Realm",
"edges": [
"4908269624",
"4924821560",
"4908409240",
"4908483960",
"4924527672"
]
},
"4908251320": {
"class_name": "CSSStyleRule",
"edges": [
"4908302648",
"4925101656",
"4908251192"
]
},
```
This makes it easy to set up a realm, global object and root execution
context with a single call to LibJS. It will be useful to basically
everyone except LibWeb.
Cell::heap() and Cell::vm() needed to access member functions from
HeapBlock, and wanted to be inline, so they were moved to VM.h.
That approach will no longer work with VM.h not being included in every
file (starting from the next commit), so this commit fixes that circular
import issue by introducing secondary base classes to host the
references to Heap and VM, respectively.
This is in preparation for an upcoming implementation of the Iterator
Helpers proposal. That proposal will require a JS::Object type named
"Iterator", so this rename is to avoid conflicts.
The JS::VM now owns the one Bytecode::Interpreter. We no longer have
multiple bytecode interpreters, and there is no concept of a "current"
bytecode interpreter.
If you ask for VM::bytecode_interpreter_if_exists(), it will return null
if we're not running the program in "bytecode enabled" mode.
If you ask for VM::bytecode_interpreter(), it will return a bytecode
interpreter in all modes. This is used for situations where even the AST
interpreter switches to bytecode mode (generators, etc.)
Don't try to implement this AO in bytecode. Instead, the bytecode
Interpreter class now has a run() API with the same inputs as the AST
interpreter. It sets up the necessary environments etc, including
invoking the GlobalDeclarationInstantiation AO.
This includes an Error::create overload to create an Error from a UTF-8
StringView. If creating a String from that view fails, the factory will
return an OOM InternalError instead. VM::throw_completion can also make
use of this overload via its perfect forwarding.
If we are out of memory, we can't try to allocate a string that could
fail as well. When Error is converted to String, this would result in an
endless OOM-throwing loop. Instead, pre-allocate the string on the VM,
and use it to construct the Error.
Note that as of this commit, the OOM string is still a DeprecatedString.
This is just preporatory for Error's conversion to String.
This will temporarily bloat the size of PrimitiveString as LibJS is
transitioned to use String throughout, but will make doing so piecemeal
much easier.
DeprecatedFlyString relies heavily on DeprecatedString's StringImpl, so
let's rename it to A) match the name of DeprecatedString, B) write a new
FlyString class that is tied to String.
This makes more sense as an Object method rather than living within the
VM class for no good reason. Most of the other 7.3.xx AOs already work
the same way.
Also add spec comments while we're here.