This modification introduces a new layer to the painting process. The
stacking context traversal no longer immediately calls the
Gfx::Painter methods. Instead, it writes serialized painting commands
into newly introduced RecordingPainter. Created list of commands is
executed later to produce resulting bitmap.
Producing painting command list will make it easier to add new
optimizations:
- It's simpler to check if the painting result is not visible in the
viewport at the command level rather than during stacking context
traversal.
- Run painting in a separate thread. The painting thread can process
serialized painting commands, while the main thread can work on the
next paintable tree and safely invalidate the previous one.
- As we consider GPU-accelerated painting support, it would be easier
to back each painting command rather than constructing an alternative
for the entire Gfx::Painter API.
This allows applying SVG <mask>s to elements. It is only implemented for
the simplest (and default) case:
- mask-type = luminance
- maskContentUnits = maskContentUnits
- maskUnits = objectBoundingBox
- Default masking area
It should be possible to extend to cover more cases. Though the layout
for maskContentUnits = objectBoundingBox will be tricky to figure out.
The SVGContext is a leftover from when SVG properties were more ad-hoc.
All properties are now (for better or worse) treated as CSS properties
(or handled elsewhere). This makes the SVGContext's fill/stroke
inheritance handling unnecessary.
The implementation of painting for SVG text follows the same pattern
as the implementation of painting for SVG geometries. However, instead
of reusing the existing PaintableWithLines to draw text, a new class
called SVGTextPaintable is introduced. because everything that is
painted inside an SVG is expected to inherit from SVGGraphicsPaintable.
Therefore reusing the text painting from regular text nodes would
require significant refactoring.