This should allow us to add a Element::attribute which returns an
Optional<String>. Eventually all callers should be ported to switch from
the DeprecatedString version, but in the meantime, this should allow us
to port some more IDL interfaces away from DeprecatedString.
Previously, the code assumed that in dividing up the space in the
affected tracks there would never be an overshoot. Instead, we can
check for each track how much extra space is left and never consume any
extra.
In the same way, we can ensure that all extra space is consumed by
distributing all remaining extra space starting from the first track.
Thus, if there is no growth limit, the space distribution should always
consume all the extra space.
The spec says that the sum of affected size + item-incurred increase
should reach the limit, rather than just the item-incurred increase.
This seems to improve layout on the testcase `row-span-2-with-gaps`.
The extra line of space at the bottom of the left div
(`div.grid-item.item-span-two`) is not present anymore, matching other
browsers' layout much more closely.
Support the optional `<attr-type>` parameter to the `attr()` function,
which allows parsing the attribute's value as a variety of types,
instead of always as a string.
Resolving typed `attr()` functions is going to involve using more
internal Parser methods, so this is the simplest solution for that.
Also... resolving these is basically parsing them, so it makes more
sense for that process to live here.
This is just moving code, with minimal changes so it still works.
The final used values for these properties is stored in the layout node,
so we need to make sure they are propagated there as well when doing
table box fixup.
Some replaced elements can have intrinsic aspect ratios but no
intrinsic size. In these cases, the tentative sizes are undefined, and
can therefore sometimes be zero. However, when resolving the size
constraints, we are already guaranteed to have an intrinsic aspect
ratio, so let's use that instead to calculate the resolved sizes.
Previously, we would run through all the constraints in the spec one by
one, but if we check and resolve each constraint in the order they are
defined in the spec, only the first four will ever match.
This leads me to believe that these constraints are meant to be
mutually exclusive instead, meaning that we must check the most
specific constraints first and return upon the first resolution that
matches.
This allows us to retain perfect precision for aspect ratios derived
from either the intrinsic sizes of replaced elements, or the
`aspect-ratio` CSS property.
We should not GC allocate in the constructors of GC-allocated objects
because a new allocation might trigger garbage collection, which in
turn might access not fully initialized objects.
There's a particularly awkward case where the static position of an
abspos child of a flex container is dependent on its height. This can
happen when `align-items: center` is in effect, as we have to adjust
the abspos child's Y position by half of its height.
This patch solves the issue by reordering operations in the abspos
height resolution algorithm, to make sure that height is resolved
before the static position is calculated.