Rather than construct a new DeclarationsModel each time the user types
something in the Locator, keep a single one around permanently in the
ProjectDeclarations, and then use a FilteringProxyModel over it for the
suggestions.
JPEGs can store a `restart_interval`, which controls how many
minimum coded units (MCUs) apart the stream state resets.
This can be used for error correction, decoding parts of a jpeg
in parallel, etc.
We tried to use
u32 i = vcursor * context.mblock_meta.hpadded_count + hcursor;
i % (context.dc_restart_interval *
context.sampling_factors.vertical *
context.sampling_factors.horizontal) == 0
to check if we hit a multiple of an MCU.
`hcursor` is the horizontal offset into 8x8 blocks, vcursor the
vertical offset, and hpadded_count stores how many 8x8 blocks
we have per row, padded to a multiple of the sampling factor.
This isn't quite right if hcursor isn't divisible by both
the vertical and horizontal sampling factor. Tweak things so
that they work.
Also rename `i` to `number_of_mcus_decoded_so_far` since that
what it is, at least now.
For the test case, I converted an existing image to a ppm:
Build/lagom/bin/image -o out.ppm \
Tests/LibGfx/test-inputs/jpg/12-bit.jpg
Then I resized it to 102x77px in Photoshop and saved it again.
Then I turned it into a jpeg like so:
path/to/cjpeg \
-outfile Tests/LibGfx/test-inputs/jpg/odd-restart.jpg \
-sample 2x2,1x1,1x1 -quality 5 -restart 3B out.ppm
The trick here is to:
a) Pick a size that's not divisible by the data size width (8),
and that when rounded to a block size (13) still isn't divisible
by the subsample factor -- done by picking a width of 102.
b) Pick a huffman table that doesn't happen to contain the bit
pattern for a restart marker, so that reading a restart marker
from the bitstream as data causes a failure (-quality 5 happens
to do this)
c) Pick a restart interval where we fail to skip it if our calculation
is off (-restart 3B)
Together with #22987, fixes#22780.
This change makes hit-testing more consistent in the handling of hidden
overflow by reusing the same clip-rectangles.
Also, it fixes bugs where the box is visible for hit-testing even
though it is clipped by the hidden overflow of the containing block.
Hit-testing relies on updated clip rectangles and containing scroll
offsets, so it's necessary to ensure that paintables have these elements
updated.
This also removes the enclosing scroll offsets update from
`Internals::hit_test()`, as it is no longer needed.
Paintable boxes should not hold information stored in device pixels.
It should be converted from CSS pixels only by the time painting
command recording occurs.
Non-interleaved files always have an MCU of one data unit.
(A "data unit" is an 8x8 tile of pixels, and an "MCU" is a
"minium coded unit", e.g. 2x2 data units for luminance and
1 data unit each for Cr and Cb for a YCrCb image with
4:2:0 subsampling.)
For the test case, I converted an existing image to a ppm:
Build/lagom/bin/image -o out.ppm \
Tests/LibGfx/test-inputs/jpg/12-bit.jpg
Then I converted it to grayscale and saved it as a pgm in Photoshop.
Then I turned it into a weird jpeg like so:
path/to/cjpeg \
-outfile Tests/LibGfx/test-inputs/jpg/grayscale_mcu.jpg \
-sample 2x2 -restart 3 out.pgm
Makes 3 of the 5 jpegs failing to decode at #22780 go.
Previously, we ignored the -p argument if it was specified. This
would resort in a crash because final_target_directory wasn't given a
value.
This snapshot does away with giving this variable an Optional<> and
just has the -p argument be its default value.
We use these canonicalized_path variables as StringViews, so it doesn't
matter if they are a String or ByteString. And they're paths so
shouldn't be String anyway.
Where it was straightforward to do so, I've updated the users to also
use ByteStrings for their file paths, but most of them have a temporary
String::from_byte_string() call instead.
That's all this function reads from Component.
Also rename from validate_luma_and_modify_context() to
validate_sampling_factors_and_modify_context().
No behavior change.
Many widget classes need to run substantial initialization code after
they have been setup from GML. With this change, an
initialize_fallibles() function is called if available, allowing the
initialization to be invoked from the GML setup automatically. This
means that the GML-generated creation function can now be used directly
for many more cases, and reduces code duplication.
This allows positioning a child SVG relative to its parent SVG.
Note: These have been implemented as CSS properties as in SVG 2, these
are geometry properties that can be used in CSS (see
https://www.w3.org/TR/SVG/geometry.html), but there is not much browser
support for this. It is nicer to implement than the ad-hoc SVG
attribute parsing though, so I feel it may make sense to port the rest
of the attributes specified here (which should fix some issues with
viewport relative sizes).
The hit-testing position is now shifted by the scroll offsets before
performing any checks for containment. This is implemented by assigning
each PaintableBox/InlinePaintable an offset corresponding to the scroll
frame in which it is contained. The non-scroll-adjusted position is
still passed down when recursing to children because the assigned
offset accumulated for nested scroll frames.
With this change, hit testing works in the Inspector.
Fixes https://github.com/SerenityOS/serenity/issues/22068
Since we might enter Internals::hit_test() before the enclosing scroll
offsets are updated in the paintables tree during pre-paint, this
update need to be enforced.