Since the color interpolation requires two pixels in the horizontal and
vertical direction to work, 1 pixel wide or high bitmaps would cause a
crash when scaling. Fix this by clamping the index into the valid range.
Fixes#16047.
Previously, calling `.right()` on a `Gfx::Rect` would return the last
column's coordinate still inside the rectangle, or `left + width - 1`.
This is called 'endpoint inclusive' and does not make a lot of sense for
`Gfx::Rect<float>` where a rectangle of width 5 at position (0, 0) would
return 4 as its right side. This same problem exists for `.bottom()`.
This changes `Gfx::Rect` to be endpoint exclusive, which gives us the
nice property that `width = right - left` and `height = bottom - top`.
It enables us to treat `Gfx::Rect<int>` and `Gfx::Rect<float>` exactly
the same.
All users of `Gfx::Rect` have been updated accordingly.
Pixels will leave the lossy decoder with alpha set to 255.
The old code would be a no-op in that case.
No observable behavior change yet, since there still is no
decoder for lossy webp.
We were performing a check whether source pixels would fall into a
clipped rect too early. Since we already clamp the resulting source
coordinates to the clipped rect, we can just remove this code.
Box sampling is a scaling algorithm that averages all the pixels that
form the source for the target pixel. For example, if you would resize a
9x9 image to 3x3, each target pixel would encompass a 3x3 pixel area in
the source image.
Box sampling is a near perfect scaling algorithm for downscaling. When
upscaling with this algorithm, the result is similar to nearest neighbor
or smooth pixels.
We were performing a check whether source pixels would fall into a
clipped rect too early. Since we already clamp the resulting source
coordinates to the clipped rect, we can just remove this code.
Box sampling is a scaling algorithm that averages all the pixels that
form the source for the target pixel. For example, if you would resize a
9x9 image to 3x3, each target pixel would encompass a 3x3 pixel area in
the source image.
Box sampling is a near perfect scaling algorithm for downscaling. When
upscaling with this algorithm, the result is similar to nearest neighbor
or smooth pixels.
For `IntRect`, we assume that the right/bottom edge is offset by minus
one. This obviously will not work for `FloatRect`, since those edges are
infinitely small.
Specialize `right()` and `bottom()` and add a `FIXME` to get rid of the
offset in the future.
This seems mostly harmless and matches what CSS expects from us at the
moment. Eventually our CSS font selection will become more sophisticated
and stop relying on Gfx::FontDatabase for things like this, but for now
it's a simple stopgap that lets websites do "font-family: arial" :^)
Fixes translating in the wrong direction or not at all in the case of
a constraint at (0,0). This doesn't appear to be used anywhere yet but
is needed in the upcoming patch.
...and instead assume it's BGRx8888 or BGRA8888, for now. Always
treating the target as BGRA8888 leads to the alpha channel being
interpreted incorrectly sometimes (as can be seen with WindowServer
overlays).
Fixes#18749
In practice, it looks like e.g. the animaged webp file on
https://mathiasbynens.be/demo/animated-webp has the header flag set,
because 2 of the frames have alpha, but they're composited on top of
the final bitmap, but the final bitmap isn't transparent there. So
that image still gets a useless alpha channel. Oh well.
This is done by adding an intermediate buffer and flush it at the end of
every row. This makes the `add_pixels` method to drop from 50% to 7% in
profiles.
As we directly write to the stream, we don't need to store a copy of the
entire image in memory. However, writing to a stream is heavier on the
CPU than to a ByteBuffer. This commit unfortunately makes `add_pixels`
two times slower.
This is done by two distinct things:
- Allowing 12 bits AC and DC coefficients
- Adjusting coefficients in the IDCT
While this patch allows to display them we still don't correctly do
the color transformation and ultimately only truncating coefficients to
8 bits.
More precisely, it allows the decoder to try `SOF1` images. There are
still some sub-kind of this kind of JPEG that we don't support. In a
nutshell `SOF1` images allow more Huffman and quantization tables, 12
bits precision and arithmetic encoding. This patch only brings support
for the "more tables" part.
Please note that `SOF2` images are also allowed to have more tables, so
we gave the decoder the ability to handle these in the same time.
Pure code move (except of removing `static` on the two public functions
in the new header), not behavior change.
There isn't a lot of lossy decoder yet, but it'll make implementing it
more convenient.
No behavior change.
Namely:
* Store compressed data in VP8Header
* Make the functions just take ReadonlyBytes instead of a Chunk
Having a function that takes a header and does decoding of the data
after the header isn't really necessary for VP8. For VP8L, it's needed
because the ALPH chunk stores VP8L data without the VP8L header.
But it's nice to make the functions consistent, and it's kind of a
nice structure.
No behavior change.
decode_webp_chunk_VP8() itself will only ever decode RGB data from a
lossy webp stream, but a separate ALPH chunk could add alpha data
later on. Let the function know if that will happen, so that it can
return a bitmap with an alpha channel if appropriate.
Since lossy decoding isn't implemented yet, no behavior change. But it
makes it a bit easier to implement lossy decoding in the future.
The one caller checked the chunk type, so the VERIFY() for that did
nothing.
The VERIFY() for vp8l data only being in files that start with
VP8L or VP8X chunks wasn't completely useless, but also not very
useful.
Remove the now-unused context parameter of decode_webp_image_data().
Most places used to call `context.error()` to report an error,
which would set the context's state to `Error` and then return an
`Error::from_string_literal()`.
This is somewhat elegant, but it doesn't work: Some functions this
code calls returns ErrorOr<>s that aren't created by `context.error()`,
and for these we wouldn't enter the error state.
Instead, manually check error-ness at the leaf entry functions of the
class:
1. Add a set_error() helper for functions returning bool
2. In the two functions returning ErrorOr<>, awkwardly check the error
manually. If this becomes a very common pattern, maybe we can add
a `TRY_WITH_HANDLER(expr, error_lambda)` which would invoke a
lambda on error. We could use that here to set the error code.
No real behavior change (except we enter the error state more often
when something goes wrong).
Instead of ImageData having an Optional<Chunk> for the image data,
have it have a Chunk, and give the context an Optional<ImageData>.
This allows sharing a single code path for checking that either the
main image or an animation frame has a main image data chunk, and
that an alpha chunk is only present with a lossy main image data
chunk.
No behavior change.