This has KString, KBuffer, DoubleBuffer, KBufferBuilder, IOWindow,
UserOrKernelBuffer and ScopedCritical classes being moved to the
Kernel/Library subdirectory.
Also, move the panic and assertions handling code to that directory.
The Storage subsystem, like the Audio and HID subsystems, exposes Unix
device files (for example, in the /dev directory). To ensure consistency
across the repository, we should make the Storage subsystem to reside in
the Kernel/Devices directory like the two other mentioned subsystems.
While the PL011-based UART0 is currently reserved for the kernel
console, UART1 is free to be exposed to the userspace as `/dev/ttyS0`.
This will be used as the stdout of `run-tests-and-shutdown.sh` when
testing the AArch64 kernel.
The Raspberry Pi hardware doesn't support a proper software-initiated
shutdown, so this instead uses the watchdog to reboot to a special
partition which the firmware interprets as an immediate halt on
shutdown. When running under Qemu, this causes the emulator to exit.
We now have everything in the AArch64 kernel to be able to use the full
`__panic` implementation, so we can share the code with x86-64.
I have kept `__assertion_failed` separate for now, as the x86-64 version
directly executes inline assembly, thus `Kernel/Arch/aarch64/Panic.cpp`
could not be removed.
This logo was actually used as a first sign of life in the very early
days of the aarch64 port.
Now that we boot into the graphical mode of the system just fine there's
no need to keep this.
PCIIRQHandler is a generic IRQ handler that the device driver can
inherit to use either Pin or MSI(x) based interrupt mechanism.
The PCIIRQHandler can do what the existing IRQHandler can do for pin
based interrupts but also deal with MSI based interrupts. We can
hopefully convert all the PCI based devices to use this handler so that
MSI(x) can be used.
MSIx table entry is used to program interrupt vectors and it is
architecture specific. Add helper functions declaration in
Arch/PCIMSI.h. The definition of the function is placed in the
respective arch specific code.
Some hardware/software configurations crash KVM as soon as we try to
start Serenity. The exact cause is currently unknown, so just fully
revert it for now.
This reverts commit 897c4e5145.
The new baked image is a Prekernel and a Kernel baked together now, so
essentially we no longer need to pass the Prekernel as -kernel and the
actual kernel image as -initrd to QEMU, leaving the option to pass an
actual initrd or initramfs module later on with multiboot.
This matches x86_64's behaviour in common_trap_exit. (called from
thread_context_first_enter)
Currently thread_context_first_enter is only called when creating new
processes from scratch, in which case this doesn't change the actual
behaviour. But once thread_context_first_enter is called as part of
execve support, this will ensure the Thread's m_current_trap is set
correctly to the new trap frame.
This is an implementation that tries to follow the spec as closely as
possible, and works with Qemu's Intel HDA and some bare metal HDA
controllers out there. Compiling with `INTEL_HDA_DEBUG=on` will provide
a lot of detailed information that could help us getting this to work
on more bare metal controllers as well :^)
Output format is limited to `i16` samples for now.
This reverts commit 187723776a.
This was reverted because it was needed until the aarch64 port
got an SD card driver
Co-authored-by: Ollrogge <nils-ollrogge@outlook.de>
This is done with 2 major steps:
1. Remove JailManagement singleton and use a structure that resembles
what we have with the Process object. This is required later for the
second step in this commit, but on its own, is a major change that
removes this clunky singleton that had no real usage by itself.
2. Use IntrusiveLists to keep references to Process objects in the same
Jail so it will be much more straightforward to iterate on this kind
of objects when needed. Previously we locked the entire Process list
and we did a simple pointer comparison to check if the checked
Process we iterate on is in the same Jail or not, which required
taking multiple Spinlocks in a very clumsy and heavyweight way.
Since the ProcFS doesn't hold many global objects within it, the need
for a fully-structured design of backing components and a registry like
with the SysFS is no longer true.
To acommodate this, let's remove all backing store and components of the
ProcFS, so now it resembles what we had in the early days of ProcFS in
the project - a mostly-static filesystem, with very small amount of
kmalloc allocations needed.
We still use the inode index mechanism to understand the role of each
inode, but this is done in a much "static"ier way than before.
Dealing with the specific details of how to program a PLL should be done
in a separate file to ensure we can easily expand it to support future
generations of the Intel graphics device.
In the real world, graphics hardware tend to have multiple display
connectors. However, usually the connectors share one register space but
still keeping different PLL timings and display lanes.
This new class should represent a group of multiple display connectors
working together in the same Intel graphics adapter. This opens an
opportunity to abstract the interface so we could support future Intel
iGPU generations.
This is also a preparation before the driver can support newer devices
and utilize their capabilities.
The mentioned preparation is applied in a these aspects:
1. The code is splitted into more classes to adjust to future expansion.
2 classes are introduced: IntelDisplayPlane and IntelDisplayTranscoder,
so the IntelDisplayPlane controls the plane registers and second class
controls the pipeline (transcoder, encoder) registers. On gen4 it's not
really useful because there are probably one plane and one encoder to
care about, but in future generations, there are likely to be multiple
transcoders and planes to accommodate multi head support.
2. The set_edid_bytes method in the DisplayConnector class can now be
told to not assume the provided EDID bytes are always invalid. Therefore
it can refrain from printing error messages if this flag parameter is
true. This is useful for supporting real hardware situation when on boot
not all ports are connected to a monitor, which can result in floating
bus condition (essentially all the bytes we read are 0xFF).
3. An IntelNativeDisplayConnector could now be set to flag other types
of connections such as eDP (embedded DisplayPort), Analog output, etc.
This is important because on the Intel gen4 graphics we could assume to
have one analog output connector, but on future generations this is very
likely to not be the case, as there might be no VGA outputs, but rather
only an eDP connector which is converted to VGA by a design choice of
the motherboard manufacturer.
4. Add ConnectorIndex to IntelNativeDisplayConnector class - Currently
this is used to verify we always handle the correct connector when doing
modesetting.
Later, it will be used to locate special settings needed when handling
connector requests.
5. Prepare to support more types of display planes. For example, the
Intel Skylake register set for display planes is a bit different, so
let's ensure we can properly support it in the near future.
This subdirectory is meant to hold all constant data related to the
kernel. This means that this data is never meant to updated and is
relevant from system boot to system shutdown.
Move the inodes of "load_base", "cmdline" and "system_mode" to that
directory. All nodes under this new subdirectory are generated during
boot, and therefore don't require calling kmalloc each time we need to
read them. Locking is also not necessary, because these nodes and their
data are completely static once being generated.
This new method is meant to be used in both userspace and kernel code.
The idea is to allow printing of a verbose message and then returning an
errno code which is the proper mechanism for kernel code because we
should almost always assume that such error will be propagated back to
userspace in some way, so the userspace code could reasonably decode it.
For userspace code however, this new method is meant to be a simple
wrapper for Error::from_string_view, because for most invocations, it's
much more useful to have a verbose & literal error than a errno code, so
we simply ignore that errno code completely in such context.
This reverts commit 4e0f85432a as the
ramdisk code is useful for the bring-up of the aarch64 port. Once the
kernel supports better ram-based filesystems, this code will be removed
again.
This filesystem is based on the code of the long-lived TmpFS. It differs
from that filesystem in one keypoint - its root inode doesn't have a
sticky bit on it.
Therefore, we mount it on /dev, to ensure only root can modify files on
that directory. In addition to that, /tmp is mounted directly in the
SystemServer main (start) code, so it's no longer specified in the fstab
file. We ensure that /tmp has a sticky bit and has the value 0777 for
root directory permissions, which is certainly a special case when using
RAM-backed (and in general other) filesystems.
Because of these 2 changes, it's no longer needed to maintain the TmpFS
filesystem, hence it's removed (renamed to RAMFS), because the RAMFS
represents the purpose of this filesystem in a much better way - it
relies on being backed by RAM "storage", and therefore it's easy to
conclude it's temporary and volatile, so its content is gone on either
system shutdown or unmounting of the filesystem.
Splitting the I2C-related code lets the DisplayConnector code to utilize
I2C operations without caring about the specific details of the hardware
and allow future expansion of the driver to other newer generations
sharing the same GMBus code.
We should require a timeout for GMBus operations always, because faulty
hardware could let us just spin forever. Also, if nothing is listening
to the bus (which should result in a NAK), we could also spin forever.
This is done by merging all scattered pieces of derived classes from the
ProcFSInode class into that one class, so we don't use inheritance but
rather simplistic checks to determine the proper code for each ProcFS
inode with its specific characteristics.