This adds support for MS_RDONLY, a mount flag that tells the kernel to disallow
any attempts to write to the newly mounted filesystem. As this flag is
per-mount, and different mounts of the same filesystems (such as in case of bind
mounts) can have different mutability settings, you have to go though a custody
to find out if the filesystem is mounted read-only, instead of just asking the
filesystem itself whether it's inherently read-only.
This also adds a lot of checks we were previously missing; and moves some of
them to happen after more specific checks (such as regular permission checks).
One outstanding hole in this system is sys$mprotect(PROT_WRITE), as there's no
way we can know if the original file description this region has been mounted
from had been opened through a readonly mount point. Currently, we always allow
such sys$mprotect() calls to succeed, which effectively allows anyone to
circumvent the effect of MS_RDONLY. We should solve this one way or another.
VFS no longer deals with inodes in public API, only with custodies and file
descriptions. Talk directly to the file system if you need to operate on a
inode. In most cases you actually want to go though VFS, to get proper
permission check and other niceties. For this to work, you have to provide a
custody, which describes *how* you have opened the inode, not just what the
inode is.
We're going to make use of it in the next commit. But the idea is we want to
know how this File (more specifically, InodeFile) was opened in order to decide
how chown()/chmod() should behave, in particular whether it should be allowed or
not. Note that many other File operations, such as read(), write(), and ioctl(),
already require the caller to pass a FileDescription.
And move canonicalized_path() to a static method on LexicalPath.
This is to make it clear that FileSystemPath/canonicalized_path() only
perform *lexical* canonicalization.
Allow file system implementation to return meaningful error codes to
callers of the FileDescription::read_entire_file(). This allows both
Process::sys$readlink() and Process::sys$module_load() to return more
detailed errors to the user.
For singly-indirect blocks, "callback" is just "add_block".
For doubly-indirect blocks, "callback" is the lambda function
iterating on singly-indirect blocks: so instead of adding itself to the
list, the doubly-indirect block will add all its childs, but they add
themselves again when they run the callback of singly-indirect blocks.
And nothing adds the doubly-indirect block itself :(
This leads to a double free of all child blocks of the doubly-indirect
block, which is the failed assert described in #1549.
Closes: #1549.
read_block() and write_block() now accept the count (how many bytes to read
or write) and offset (where in the block to start; defaults to 0). Using these
new APIs, we can avoid doing copies between intermediary buffers in a lot more
cases. Hopefully this improves performance or something.
This was supposed to be the foundation for some kind of pre-kernel
environment, but nobody is working on it right now, so let's move
everything back into the kernel and remove all the confusion.
Since a Region is basically a view into a potentially larger VMObject,
it was always necessary to include the Region starting offset when
accessing its underlying physical pages.
Until now, you had to do that manually, but this patch adds a simple
Region::physical_page() for read-only access and a physical_page_slot()
when you want a mutable reference to the RefPtr<PhysicalPage> itself.
A lot of code is simplified by making use of this.
The next commit is going to make it bigger again by increasing the size of Lock,
so make use of bitfields to make sure FileDescription still fits into 64 bytes,
and so can still be allocated with the SlabAllocator.
In contrast to the previous patchset that was reverted, this time we use
a "special" method to access a file with block size of 512 bytes (like
a harddrive essentially).
We were allowing this dangerous kind of thing:
RefPtr<Base> base;
RefPtr<Derived> derived = base;
This patch changes the {Nonnull,}RefPtr constructors so this is no
longer possible.
To downcast one of these pointers, there is now static_ptr_cast<T>:
RefPtr<Derived> derived = static_ptr_cast<Derived>(base);
Fixing this exposed a ton of cowboy-downcasts in various places,
which we're now forced to fix. :^)
This was causing some obvious-in-hindsight but hard to spot bugs where
we'd implicitly convert the bool to an integer type and carry on with
the number 1 instead of the actual value().