When iterating over an iterable, we get back a JS object with the fields
"value" and "done".
Before this change, we've had two dedicated instructions for retrieving
the two fields: IteratorResultValue and IteratorResultDone. These had no
fast path whatsoever and just did a generic [[Get]] access to fetch the
corresponding property values.
By replacing the instructions with GetById("value") and GetById("done"),
they instantly get caching and JIT fast paths for free, making iterating
over iterables much faster. :^)
26% speed-up on this microbenchmark:
function go(a) {
for (const p of a) {
}
}
const a = [];
a.length = 1_000_000;
go(a);
This patch makes IteratorRecord an Object. Although it's not exposed to
author code, this does allow us to store it in a VM register.
Now that we can store it in a VM register, we don't need to convert it
back and forth between IteratorRecord and Object when accessing it from
bytecode.
The big win here is avoiding 3 [[Get]] accesses on every iteration step
of for..of loops. There are also a bunch of smaller efficiencies gained.
20% speed-up on this microbenchmark:
function go(a) {
for (const p of a) {
}
}
const a = [];
a.length = 1_000_000;
go(a);
This will not meaningfully affect short array literals, but it does
give us a bit of extra perf when evaluating huge array expressions like
in Kraken/imaging-darkroom.js
Until now, the unwind context stack has not been maintained by jitted
code, which meant we were unable to support the `with` statement.
This is a first step towards supporting that by making jitted code
call out to C++ to update the unwind context stack when entering/leaving
unwind contexts.
We also introduce a new "Catch" bytecode instruction that moves the
current exception into the accumulator. It's always emitted at the start
of a "catch" block.
This is in preparation for making LibJIT support multiple architectures.
Assembler will now be typedefed to the specific assembler
for a particular architecture.
Additionally, there's now JIT_ARCH_SUPPORTED which is defined on
architectures which LibJIT supports.
This works by walking a backtrace until the currently executing
native executable is found, and then mapping the native address
to its bytecode instruction.