Since the payload size is user-controlled, this could be used to
overflow the kernel stack.
We should probably also be breaking things into smaller packets at a
higher level, e.g TCPSocket::protocol_send(), but let's do that as
a separate exercise.
Fixes#5310.
Not sure why this was 4 MiB in the first place, but that's a lot of
memory to reserve for each thread when we're running with 512 MiB
total in the default testing setup. :^)
* We don't have to lock the "all IPv4 sockets" in exclusive mode, shared mode is
enough for just reading the list (as opposed to modifying it).
* We don't have to lock socket's own lock at all, the IPv4Socket::did_receive()
implementation takes care of this.
* Most importantly, we don't have to hold the "all IPv4 sockets" across the
IPv4Socket::did_receive() call(s). We can copy the current ICMP socket list
while holding the lock, then release the lock, and then call
IPv4Socket::did_receive() on all the ICMP sockets in our list.
These changes fix a deadlock triggered by receiving ICMP messages when using tap
networking setup (as opposed to QEMU's default user/SLIRP networking) on the host.
The way we read/write directories is very inefficient, and this doesn't
solve any of that. It does however reduce memory usage of directory
entry vectors by 25% which has nice immediate benefits.
CLion doesn't understand that we switch compilers mid-build (which I
can understand since it's a bit unusual.) Defining __serenity__ makes
the majority of IDE features work correctly in the kernel context.
sys$fork() already takes care of children inheriting the parent's root
directory, so there was no need to do the same thing when creating a
new user process.
Add a per-process ptrace lock and use it to prevent ptrace access to a
process after it decides to commit to a new executable in sys$execve().
Fixes#5230.
This patch adds Space, a class representing a process's address space.
- Each Process has a Space.
- The Space owns the PageDirectory and all Regions in the Process.
This allows us to reorganize sys$execve() so that it constructs and
populates a new Space fully before committing to it.
Previously, we would construct the new address space while still
running in the old one, and encountering an error meant we had to do
tedious and error-prone rollback.
Those problems are now gone, replaced by what's hopefully a set of much
smaller problems and missing cleanups. :^)