This commit removes the usage of HashMap in Mutex, thereby making Mutex
be allocation-free.
In order to achieve this several simplifications were made to Mutex,
removing unused code-paths and extra VERIFYs:
* We no longer support 'upgrading' a shared lock holder to an
exclusive holder when it is the only shared holder and it did not
unlock the lock before relocking it as exclusive. NOTE: Unlike the
rest of these changes, this scenario is not VERIFY-able in an
allocation-free way, as a result the new LOCK_SHARED_UPGRADE_DEBUG
debug flag was added, this flag lets Mutex allocate in order to
detect such cases when debugging a deadlock.
* We no longer support checking if a Mutex is locked by the current
thread when the Mutex was not locked exclusively, the shared version
of this check was not used anywhere.
* We no longer support force unlocking/relocking a Mutex if the Mutex
was not locked exclusively, the shared version of these functions
was not used anywhere.
Apologies for the enormous commit, but I don't see a way to split this
up nicely. In the vast majority of cases it's a simple change. A few
extra places can use TRY instead of manual error checking though. :^)
When doing the last unref() on a listed-ref-counted object, we keep
the list locked while mutating the ref count. The destructor itself
is invoked after unlocking the list.
This was racy with weakable classes, since their weak pointer factory
still pointed to the object after we'd decided to destroy it. That
opened a small time window where someone could try to strong-ref a weak
pointer to an object after it was removed from the list, but just before
the destructor got invoked.
This patch closes the race window by explicitly revoking all weak
pointers while the list is locked.
Use the same trick as SlavePTY and override unref() to provide safe
removal from the sockets_by_tuple table when destroying a TCPSocket.
This should fix the TCPSocket::from_tuple() flake seen on CI.
Calls to link_up() in the E1000 driver would read the link state
directly from the hardware on every call. This had negative
performance impact in high throughput situations since link_up()
is called every time an IP packet's route is resolved.
This patch takes inspiration from the RTL8139 network adapter where
the link state is stored in a bool and only updated when the hardware
generates an interrupt related to link state change.
After this change I measured a ~9% increase in TCP Tx throughput
using:
cat /dev/zero | nc <host_IP> <host_port> from the Serenity VM to my
host machine
Previously we would crash the process immediately when a promise
violation was found during a syscall. This is error prone, as we
don't unwind the stack. This means that in certain cases we can
leak resources, like an OwnPtr / RefPtr tracked on the stack. Or
even leak a lock acquired in a ScopeLockLocker.
To remedy this situation we move the promise violation handling to
the syscall handler, right before we return to user space. This
allows the code to follow the normal unwind path, and grantees
there is no longer any cleanup that needs to occur.
The Process::require_promise() and Process::require_no_promises()
functions were modified to return ErrorOr<void> so we enforce that
the errors are always propagated by the caller.
This change lays the foundation for making the require_promise return
an error hand handling the process abort outside of the syscall
implementations, to avoid cases where we would leak resources.
It also has the advantage that it makes removes a gs pointer read
to look up the current thread, then process for every syscall. We
can instead go through the Process this pointer in most cases.
This was a premature optimization from the early days of SerenityOS.
The eternal heap was a simple bump pointer allocator over a static
byte array. My original idea was to avoid heap fragmentation and improve
data locality, but both ideas were rooted in cargo culting, not data.
We would reserve 4 MiB at boot and only ended up using ~256 KiB, wasting
the rest.
This patch replaces all kmalloc_eternal() usage by regular kmalloc().
Since a socket can be accessed by multiple threads concurrently, we need
to protect shared data behind the socket mutex.
There's very likely more places where we need to fix this, the purpose
of this patch is to fix a VERIFY() failure in getsockopt() seen on CI.
This was used to return a pre-locked UDPSocket in one place, but there
was really no need for that mechanism in the first place since the
caller ends up locking the socket anyway.
The sa_family field in SIOCGIFHWADDR specifies the underlying network
interface's device type, this is hardcoded to generic "Ethernet" right
now, as we don't have a nice way to query it.
This fixes at least half of our LibC includes in the kernel. The source
of truth for errno codes and their description strings now lives in
Kernel/API/POSIX/errno.h as an enumeration, which LibC includes.
Before this commit, we only checked the receive buffer on the socket,
which is unused on datagram streams. Now we return the actual size of
the datagram without the protocol headers, which required the protocol
to tell us what the size of the payload is.
This option is already enabled when building Lagom, so let's enable it
for the main build too. We will no longer be surprised by Lagom Clang
CI builds failing while everything compiles locally.
Furthermore, the stronger `-Wsuggest-override` warning is enabled in
this commit, which enforces the use of the `override` keyword in all
classes, not just those which already have some methods marked as
`override`. This works with both GCC and Clang.
Some calls of copy_to_user were converting Userspace<T*> to
Userspace<U*> via the implicit conversion to FlatPtr. Change them to use
the static_ptr_cast overload that is designed to express this conversion
Instead of signalling allocation failure with a bool return value
(false), we now use ErrorOr<void> and return ENOMEM as appropriate.
This allows us to use TRY() and MUST() with Vector. :^)
We now use AK::Error and AK::ErrorOr<T> in both kernel and userspace!
This was a slightly tedious refactoring that took a long time, so it's
not unlikely that some bugs crept in.
Nevertheless, it does pass basic functionality testing, and it's just
real nice to finally see the same pattern in all contexts. :^)
Found due to smelly code in InodeFile::absolute_path.
In particular, this replaces the following misleading methods:
File::absolute_path
This method *never* returns an actual path, and if called on an
InodeFile (which is impossible), it would VERIFY_NOT_REACHED().
OpenFileDescription::try_serialize_absolute_path
OpenFileDescription::absolute_path
These methods do not guarantee to return an actual path (just like the
other method), and just like Custody::absolute_path they do not
guarantee accuracy. In particular, just renaming the method made a
TOCTOU bug obvious.
The new method signatures use KResultOr, just like
try_serialize_absolute_path() already did.