Candidate vector selections are only used to calculate the new vectors
for the current block, so we only need to keep those for the duration
of the inter_block_mode_info() call.
Candidate vectors are now stored in BlockMotionVectorCandidates, which
contains the fields necessary to choose the vector to use to sample
from the selected reference frame.
Most functions related to motion vectors were renamed to more verbose
but meaningful names.
The log2 of tile counts in the horizontal and vertical dimensions are
now stored in the FrameContext struct to be kept only as long as they
are needed.
This also renames (most?) of the related quantizer functions and
variables to make more sense. I haven't determined what AC/DC stands
for here, but it may be just an arbitrary naming scheme for the first
and subsequent coefficients used to quantize the residuals for a block.
The color config is reused for most inter predicted frames, so we use a
struct ColorConfig to store the config from intra frames, and put it in
a field in Parser to copy from when an inter frame without color config
is encountered.
There are three mutually exclusive frame-showing states:
- Show no new frame, only store the frame as a reference.
- Show a newly decoded frame.
- Show frame from the reference frame store.
Since they are mutually exclusive, using an enum rather than two bools
makes more sense.
These are used to pass context needed for decoding, with mutability
scoped only to the sections that the function receiving the contexts
needs to modify. This allows lifetimes of data to be more explicit
rather than being stored in fields, as well as preventing tile threads
from modifying outside their allowed bounds.
The field was only used once to track whether residual tokens were
present in the block. Parser::tokens() now returns a bool indicating
whether they were present.
These are now passed as parameters to each function that uses them.
These will later be moved to a struct to further reduce the amount of
parameters that get passed around.
Above and left per-frame block contexts are now also parameters passed
to the functions that use them instead of being retrieved when needed
from a field. This will allow them to be more easily moved to a tile-
specific context later.
There are three fields that we need to store from FrameBlockContext to
keep between frames, which are used to parse for those same fields for
the next frame.
The function serves no purpose now, any debug information we want to
pull from the decoder should be instead accessed by some other yet to
be created interface.
All state that needed to persist between calls to decode_block was
previously stored in plain Vector fields. This moves them into a struct
which sets a more explicit lifetime on that data. It may be possible to
store this data on the stack of a function with the appropriate
lifetime now that it is split into its own struct.
The default intra prediction mode was only used to set the sub-block
modes and the y prediction mode. Instead of storing it in a field, with
the sub modes are stored in an Array, we can just pull the last element
to set the y mode.
This has two benefits:
- I observed a ~34% decrease in decoding time running TestVP9Decode.
- Removing all of these silly Vector fields helps simplify the code
relationships between all the functions in Decoder.cpp. It'll also be
much easier to make these static with template specializations, if
that turns out to be worthy performance improvement.
With the addition of this struct, both the bool to determine if coefs
should be parsed and the token parse itself can take specific
parameters.
This is the last step in parameterizing all the tree parsing, so the
old functions in TreeParser are now unused. This patch is very
satisfying :^)
There's still more work to be done to clean up how the parameters are
passed from Parser, but that's work for another day.
Since these two types are often passed around as a pair, it's easier to
handle them with a simple pair struct, at least for now. Once things
are fully being passed around as parameters wherever possible, it may
be good to change this type for something more generalized.
This adds a tree-parsing function that can be called statically from
specific trees' implementations in TreeParser, of which Partition is
the first. This way, all calls to tree parses will take the context
they need to be able to select a tree and probabilities, which will
allow removal of the state dependence in TreeParser on fields from
itself and Parser.
The two different mode sets are stored in single fields, and the
underlying values didn't overlap, so there was no reason to keep them
separate.
The enum is now an enum class as well, to enforce that almost all uses
of the enum are named. The only case where underlying values are used
is in lookup tables, but it may be worth abstracting that as well to
make array bounds more clear.
Frames will now be queued for retrieval by the user of the decoder.
When the end of the current queue is reached, a DecoderError of
category NeedsMoreInput will be emitted, allowing the caller to react
by displaying what was previously retrieved for sending more samples.