Similar to POSIX read, the basic read and write functions of AK::Stream
do not have a lower limit of how much data they read or write (apart
from "none at all").
Rename the functions to "read some [data]" and "write some [data]" (with
"data" being omitted, since everything here is reading and writing data)
to make them sufficiently distinct from the functions that ensure to
use the entire buffer (which should be the go-to function for most
usages).
No functional changes, just a lot of new FIXMEs.
This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.
One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
Otherwise, we end up propagating those dependencies into targets that
link against that library, which creates unnecessary link-time
dependencies.
Also included are changes to readd now missing dependencies to tools
that actually need them.
We previously put the generated headers in SOURCES, which did not mark
them as GENERATED (and did not produce a proper dependency).
This commit moves all generated headers into GENERATED_SOURCES, and
removes useless header SOURCES.
This is a partial revert of commit 7af5eef. After 97d15e9, the 'proc'
promise is not needed for operations using getsid().
This also fixes launching several applications in which 7af5eef added
the 'proc' promise only in the second call to pledge().
This commit does three things atomically:
- switch over Core::Account+SystemServer+LoginServer to sid based socket
names.
- change socket names with %uid to %sid.
- add/update necessary pledges and unveils.
Userland: Switch over servers to sid based sockets
Userland: Properly pledge and unveil for sid based sockets
A mistake I've repeatedly made is along these lines:
```c++
auto nread = TRY(source_file->read(buffer));
TRY(destination_file->write(buffer));
```
It's a little clunky to have to create a Bytes or StringView from the
buffer's data pointer and the nread, and easy to forget and just use
the buffer. So, this patch changes the read() function to return a
Bytes of the data that were just read.
The other read_foo() methods will be modified in the same way in
subsequent commits.
Fixes#13687
This prevents a crash when the inspected process closes the socket (i.e.
when the app is exited). This crash was caused by the InspectableProcess
removing itself from the global process table within a callback Function
that is stored as part of the InspectableProcess.
Apologies for the enormous commit, but I don't see a way to split this
up nicely. In the vast majority of cases it's a simple change. A few
extra places can use TRY instead of manual error checking though. :^)
This change unfortunately cannot be atomically made without a single
commit changing everything.
Most of the important changes are in LibIPC/Connection.cpp,
LibIPC/ServerConnection.cpp and LibCore/LocalServer.cpp.
The notable changes are:
- IPCCompiler now generates the decode and decode_message functions such
that they take a Core::Stream::LocalSocket instead of the socket fd.
- IPC::Decoder now uses the receive_fd method of LocalSocket instead of
doing system calls directly on the fd.
- IPC::ConnectionBase and related classes now use the Stream API
functions.
- IPC::ServerConnection no longer constructs the socket itself; instead,
a convenience macro, IPC_CLIENT_CONNECTION, is used in place of
C_OBJECT and will generate a static try_create factory function for
the ServerConnection subclass. The subclass is now responsible for
passing the socket constructed in this function to its
ServerConnection base; the socket is passed as the first argument to
the constructor (as a NonnullOwnPtr<Core::Stream::LocalServer>) before
any other arguments.
- The functionality regarding taking over sockets from SystemServer has
been moved to LibIPC/SystemServerTakeover.cpp. The Core::LocalSocket
implementation of this functionality hasn't been deleted due to my
intention of removing this class in the near future and to reduce
noise on this (already quite noisy) PR.
`length` was inheriting `size_t` type of the `String::length()`, while
everywhere else in the Inspector we expect fixed 32-bit field. On the
architectures where `sizeof(size_t) != sizeof(u32)` this broke the
Inspector communication completely.
This encapsulates what our multi-client IPC servers typically do on
startup:
1. Create a Core::LocalServer
2. Take over a listening socket file descriptor from SystemServer
3. Set up an accept handler for incoming connections
IPC::MultiServer does all this for you! All you have to do is provide
the relevant client connection type as a template argument.
These ones all manage their storage internally, whereas the WebContent
and ImageDecoder ones require the caller to manage their lifetime. This
distinction is not obvious to the user without looking through the code,
so an API that makes this clearer would be nice.
Everyone used this hook in the same way: immediately accept() on the
socket and then do something with the newly accepted fd.
This patch simplifies the hook by having LocalServer do the accepting
automatically.
Same as Vector, ByteBuffer now also signals allocation failure by
returning an ENOMEM Error instead of a bool, allowing us to use the
TRY() and MUST() patterns.
Derivatives of Core::Object should be constructed through
ClassName::construct(), to avoid handling ref-counted objects with
refcount zero. Fixing the visibility means that misuses like this are
more difficult.
This functionality, while neat, isn't really something you need enabled
all the time. Let's make it opt-in instead. Pass MakeInspectable::Yes
to the Core::EventLoop constructor if you want your program to become
inspectable.
This service daemon will act as an intermediary between the Inspector
program and the inspectable programs it wants to inspect.
Programs can make themselves available for inspection by connecting
to /tmp/portal/inspectables using the Core::EventLoop RPC protocol.