This is a convenient wrapper around readlink() that hides away the details
of buffers and buffer sizes, and simply returns a String. The best part is it
doesn't rely on PATH_MAX :D
It comes in two versions, for Serenity, where we can pass non-null-terminated
strings to syscalls, and where sys$readlink() returns the total link size, and
for other systems, where we have to copy out the string, and always have to do
two syscalls.
That's not how readlink() is supposed to work: it should copy as many bytes
as fit into the buffer, and return the number of bytes copied. So do that,
but add a twist: make sys$readlink() actually return the whole size, not
the number of bytes copied. We fix up this return value in userspace, to make
LibC's readlink() behave as expected, but this will also allow other code
to allocate a buffer of just the right size.
Also, avoid an extra copy of the link target.
This was showing up in Browser profiles, which is silly, so write a new
version that doesn't create a temporary String object.
There are a whole bunch of these and long-term it would be nice to find
a way to share all the very similar logic instead of duplicating it.
The more generic virtual variant is renamed to node_name() and now only
Element has tag_name(). This removes a huge amount of String ctor/dtor
churn in selector matching.
Toolchain/BuiltIt.sh expected a version of cmake which
apt did not provide for my system. Added note of the
expected version and where to find a newer version.
Hey, why not. We did all the hard work for display:inline-block already
and now we can just allow this.
This makes <a><h1>Hello friends!</h1></a> work :^)
To support z-ordering when painting, the layout tree now has a parallel
sparse tree of stacking contexts. The rules for which layout boxes
establish a stacking context are a bit complex, but the intent is to
encapsulate the decision making into establishes_stacking_context().
When we paint, we start from the ICB (LayoutDocument) who always has a
StackingContext and then paint the tree of StackingContexts where each
node has its children sorted by z-index.
This is pretty crude, but gets the basic job done. Note that this does
not yet support hit testing; hit testing is still done using a naive
treewalk from the root.
The only layout nodes that don't have their own style are LayoutText
(they inherit the style from their parent element since text cannot
be styled by CSS.)
However, it never makes sense for text nodes to have absolute position
so don't claim it.
Previously, layout recursively performed these steps (roughly):
1. Compute own width
2. Compute own position
3. Layout in-flow children
4. Compute own height
5. Layout absolutely positioned descendants
However, step (2) was pretty inconsistent. Some things computed their
own position, others had their parent do it for them, etc.
To get closer to CSS spec language, and make things easier in general,
this patch reorganizes the algorithm into:
1. Compute own width & height
2. Compute width & height of in-flow managed descendants
3. Move in-flow managed descendants to their final position
4. Layout absolutely positioned descendants
Block layout is now driven by the containing block, which will iterate
the descendants it's responsible for. There are a lot of inefficient
patterns in this logic right now, but they can easily be replaced with
better iteration functions once we settle on a long-term architecture.
Since the ICB (LayoutDocument) is at (0, 0), it doesn't rely on a
containing block to move it into place.
This code is still evolving along with my understanding of CSS layout,
so it's likely that we'll reorganize this again sooner or later. :^)