* The origin PID is the PID of the process that created this socket,
either explicitly by calling socket(), or implicitly by accepting
a TCP connection. Note that accepting a local socket connection
does not create a new socket, it reuses the one connect() was
called on, so for accepted local sockets the origin PID points
to the connecting process.
* The acceptor PID is the PID of the process that accept()ed this
socket. For accepted TCP sockets, this is the same as origin PID.
This is more logical and allows us to solve the problem of
non-blocking TCP sockets getting stuck in SocketRole::None.
The only complication is that a single LocalSocket may be shared
between two file descriptions (on the connect and accept sides),
and should have two different roles depending from which side
you look at it. To deal with it, Socket::role() is made a
virtual method that accepts a file description, and LocalSocket
internally tracks which FileDescription is the which one and
returns a correct role.
Now that there can't be multiple clones of the same fd,
we only need to track whether or not an fd exists on each
side. Also there's no point in tracking connecting fds.
After a fork, the parent and the child are supposed to share
the same file description. For example, modifying the current
offset of a file description is visible in both of them.
Apparently we need to poll the drive for its status after each sector we
read if we're not doing DMA. Previously we only did it at the start,
which resulted in every sector after the first in a batch having 12 bytes
of garbage on the end. This manifested as silent read corruption.
serial_debug will output all the kprintf and dbgprintf data to COM1 at
8-N-1 57600 baud. this is particularly useful for debugging the boot
process on live hardware.
Note: it must be the first parameter in the boot cmdline.
Since this key number doesn't appear to collide with anything on the
US keymap, I was thinking we could get away with supporting a hybrid
US/UK keymap. :^)
Once we've converted from an Ethernet frame to an IPv4 packet, we can
pass the IPv4Packet around instead of the EthernetFrameHeader.
Also add some more code to ignore invalid-looking packets.
Remove the global hash tables and replace them with InlineLinkedLists.
This significantly reduces the kernel heap pressure from doing many
small mmap()'s.
Using a HashTable to track "all instances of Foo" is only useful if we
actually need to look up entries by some kind of index. And since they
are HashTable (not HashMap), the pointer *is* the index.
Since we have the pointer, we can just use it directly. Duh.
This increase sizeof(VMObject) by two pointers, but removes a global
table that had an entry for every VMObject, where the cost was higher.
It also avoids all the general hash tabling business when creating or
destroying VMObjects. Generally we should do more of this. :^)
This is comprised of five small changes:
* Keep a counter for tx/rx packets/bytes per TCP socket
* Keep a counter for tx/rx packets/bytes per network adapter
* Expose that data in /proc/net_tcp and /proc/netadapters
* Convert /proc/netadapters to JSON
* Fix up ifconfig to read the JSON from netadapters
We were only doing this in Process::deallocate_region(), which meant
that kernel-only Regions never gave back their VM.
With this patch, we can start reusing freed-up address space! :^)
This is not perfect as it uses a lot of VM, but since the buffers are
supposed to be temporary it's not super terrible.
This could be improved by giving back the unused VM to the kernel's
RangeAllocator after finishing the buffer building.