mirror of
https://github.com/RGBCube/serenity
synced 2025-05-14 21:14:59 +00:00

And create a struct encapsulating argument name in the preparation for argument types and optional arguments.
453 lines
13 KiB
C++
453 lines
13 KiB
C++
/*
|
|
* Copyright (c) 2023, Dan Klishch <danilklishch@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Queue.h>
|
|
|
|
#include "AST/AST.h"
|
|
#include "Compiler/GenericASTPass.h"
|
|
#include "Compiler/Passes/SSABuildingPass.h"
|
|
#include "Function.h"
|
|
|
|
namespace JSSpecCompiler {
|
|
|
|
void SSABuildingPass::process_function()
|
|
{
|
|
m_dtree_timer = 0;
|
|
m_order.clear();
|
|
m_mark_version = 1;
|
|
m_def_stack.clear();
|
|
m_next_id.clear();
|
|
m_undo_vector.clear();
|
|
m_graph = m_function->m_cfg;
|
|
|
|
with_graph(m_graph->blocks_count(), [&] {
|
|
compute_dominator_tree();
|
|
compute_dominance_frontiers();
|
|
place_phi_nodes();
|
|
rename_variables();
|
|
});
|
|
}
|
|
|
|
// ===== compute_dominator_tree =====
|
|
namespace {
|
|
class DSU {
|
|
struct NodeData {
|
|
size_t sdom;
|
|
size_t parent;
|
|
};
|
|
|
|
public:
|
|
DSU(size_t n)
|
|
: n(n)
|
|
{
|
|
m_nodes.resize(n);
|
|
for (size_t i = 0; i < n; ++i)
|
|
m_nodes[i] = { i, i };
|
|
}
|
|
|
|
NodeData get(size_t u)
|
|
{
|
|
if (m_nodes[u].parent == u)
|
|
return { n, u };
|
|
auto [sdom, root] = get(m_nodes[u].parent);
|
|
sdom = min(sdom, m_nodes[u].sdom);
|
|
return m_nodes[u] = { sdom, root };
|
|
}
|
|
|
|
void merge(size_t u, size_t v, size_t v_sdom)
|
|
{
|
|
m_nodes[v] = { v_sdom, u };
|
|
}
|
|
|
|
private:
|
|
size_t n;
|
|
Vector<NodeData> m_nodes;
|
|
};
|
|
}
|
|
|
|
void SSABuildingPass::compute_order(BasicBlockRef u, Vertex parent)
|
|
{
|
|
if (m_nodes[u->m_index].is_used)
|
|
return;
|
|
m_nodes[u->m_index].is_used = true;
|
|
|
|
Vertex reordered_u = m_order.size();
|
|
m_order.append(RefPtr<BasicBlock>(u).release_nonnull());
|
|
reordered_u->parent = parent;
|
|
|
|
for (auto* v : u->m_continuation->references())
|
|
compute_order(*v, reordered_u);
|
|
}
|
|
|
|
void SSABuildingPass::compute_dominator_tree()
|
|
{
|
|
size_t n = m_graph->blocks_count();
|
|
m_nodes.resize(n);
|
|
|
|
// Algorithm is from https://tanujkhattar.wordpress.com/2016/01/11/dominator-tree-of-a-directed-graph/ ,
|
|
// an author writes awful CP-style write-only code, but the explanation is pretty good.
|
|
|
|
// Step 1
|
|
compute_order(m_graph->start_block);
|
|
VERIFY(m_order.size() == n);
|
|
for (size_t i = 0; i < n; ++i)
|
|
m_order[i]->m_index = i;
|
|
m_graph->blocks = m_order;
|
|
|
|
for (size_t i = 0; i < n; ++i) {
|
|
Vertex u = i;
|
|
|
|
for (auto* reference : u.block()->m_continuation->references()) {
|
|
Vertex v { *reference };
|
|
|
|
v->incoming_edges.append(u);
|
|
u->outgoing_edges.append(v);
|
|
}
|
|
}
|
|
|
|
// Steps 2 & 3
|
|
DSU dsu(n);
|
|
|
|
for (size_t i = n - 1; i > 0; --i) {
|
|
Vertex u = i;
|
|
|
|
Vertex& current_sdom = u->semi_dominator;
|
|
current_sdom = n;
|
|
|
|
for (Vertex v : u->incoming_edges) {
|
|
if (v < u)
|
|
current_sdom = min(current_sdom, v);
|
|
else
|
|
current_sdom = min(current_sdom, dsu.get(v).sdom);
|
|
}
|
|
|
|
current_sdom->buckets.append(u);
|
|
for (Vertex w : u->buckets) {
|
|
Vertex v = dsu.get(w).sdom;
|
|
|
|
if (v->semi_dominator == w->semi_dominator)
|
|
w->immediate_dominator = v->semi_dominator;
|
|
else
|
|
w->immediate_dominator = v;
|
|
}
|
|
dsu.merge(u->parent, u, current_sdom);
|
|
}
|
|
|
|
m_nodes[0].immediate_dominator = invalid_node;
|
|
for (size_t i = 1; i < n; ++i) {
|
|
Vertex u = i;
|
|
|
|
if (u->immediate_dominator.is_invalid())
|
|
u->immediate_dominator = 0;
|
|
else if (u->immediate_dominator != u->semi_dominator)
|
|
u->immediate_dominator = u->immediate_dominator->immediate_dominator;
|
|
}
|
|
|
|
// Populate dtree_children & BasicBlock::immediate_dominator
|
|
for (size_t i = 0; i < n; ++i) {
|
|
Vertex u = i;
|
|
|
|
if (i != 0) {
|
|
u.block()->m_immediate_dominator = u->immediate_dominator.block();
|
|
u->immediate_dominator->dtree_children.append(u);
|
|
} else {
|
|
u.block()->m_immediate_dominator = nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
// ===== compute_dominance_frontiers =====
|
|
template<typename... Args>
|
|
Vector<SSABuildingPass::Vertex> SSABuildingPass::unique(Args const&... args)
|
|
{
|
|
++m_mark_version;
|
|
|
|
Vector<Vertex> result;
|
|
(([&](auto const& list) {
|
|
for (Vertex u : list) {
|
|
if (u->mark != m_mark_version) {
|
|
u->mark = m_mark_version;
|
|
result.append(u);
|
|
}
|
|
}
|
|
})(args),
|
|
...);
|
|
return result;
|
|
}
|
|
|
|
void SSABuildingPass::compute_dtree_tin_tout(Vertex u)
|
|
{
|
|
u->tin = m_dtree_timer++;
|
|
for (Vertex v : u->dtree_children)
|
|
compute_dtree_tin_tout(v);
|
|
u->tout = m_dtree_timer++;
|
|
}
|
|
|
|
bool SSABuildingPass::is_strictly_dominating(Vertex u, Vertex v)
|
|
{
|
|
return u != v && u->tin <= v->tin && v->tout <= u->tout;
|
|
}
|
|
|
|
void SSABuildingPass::compute_dominance_frontiers()
|
|
{
|
|
compute_dtree_tin_tout(0);
|
|
|
|
// Algorithm from https://en.wikipedia.org/wiki/Static_single-assignment_form#Converting%20to%20SSA:~:text=their%20paper%20titled-,A%20Simple%2C%20Fast%20Dominance%20Algorithm,-%3A%5B13%5D .
|
|
// DF(u) = {w : !(u sdom w) /\ (\exists v \in incoming_edges(v) : u dom v)}
|
|
for (size_t wi = 0; wi < m_nodes.size(); ++wi) {
|
|
Vertex w = wi;
|
|
|
|
for (Vertex v : w->incoming_edges) {
|
|
Vertex u = v;
|
|
while (u != invalid_node && !is_strictly_dominating(u, w)) {
|
|
u->d_frontier.append(w);
|
|
u = u->immediate_dominator;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < m_nodes.size(); ++i) {
|
|
Vertex u = i;
|
|
|
|
u->d_frontier = unique(u->d_frontier);
|
|
}
|
|
}
|
|
|
|
// ===== place_phi_nodes =====
|
|
namespace {
|
|
class VariableAssignmentCollector : private RecursiveASTVisitor {
|
|
public:
|
|
VariableAssignmentCollector(OrderedHashMap<NamedVariableDeclarationRef, Vector<BasicBlockRef>>& declarations)
|
|
: m_declarations(declarations)
|
|
{
|
|
}
|
|
|
|
void run(BasicBlockRef block)
|
|
{
|
|
m_current_block = block;
|
|
|
|
for (auto& expression : block->m_expressions)
|
|
run_in_subtree(expression);
|
|
run_in_const_subtree(block->m_continuation);
|
|
}
|
|
|
|
protected:
|
|
RecursionDecision on_entry(Tree tree) override
|
|
{
|
|
if (tree->is_statement())
|
|
TODO();
|
|
return RecursionDecision::Recurse;
|
|
}
|
|
|
|
void on_leave(Tree tree) override
|
|
{
|
|
if (auto binary_operation = as<BinaryOperation>(tree); binary_operation) {
|
|
if (binary_operation->m_operation != BinaryOperator::Assignment)
|
|
return;
|
|
|
|
if (auto variable = as<Variable>(binary_operation->m_left); variable) {
|
|
auto& vector = m_declarations.get(variable->m_name).value();
|
|
if (vector.is_empty() || vector.last() != m_current_block)
|
|
vector.append(m_current_block);
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
BasicBlockRef m_current_block;
|
|
OrderedHashMap<NamedVariableDeclarationRef, Vector<BasicBlockRef>>& m_declarations;
|
|
};
|
|
}
|
|
|
|
void SSABuildingPass::add_phi_node(BasicBlockRef block, NamedVariableDeclarationRef decl)
|
|
{
|
|
BasicBlock::PhiNode node { .var = make_ref_counted<Variable>(decl) };
|
|
for (Vertex incoming : Vertex(block)->incoming_edges) {
|
|
BasicBlockRef incoming_block = incoming.block();
|
|
auto value = make_ref_counted<Variable>(decl);
|
|
node.branches.append({ .block = incoming_block, .value = value });
|
|
}
|
|
block->m_phi_nodes.append(move(node));
|
|
}
|
|
|
|
void SSABuildingPass::place_phi_nodes()
|
|
{
|
|
// Entry block has implicit declarations of all variables.
|
|
OrderedHashMap<NamedVariableDeclarationRef, Vector<BasicBlockRef>> m_declarations;
|
|
for (auto const& [name, var_decl] : m_function->m_local_variables)
|
|
m_declarations.set(var_decl, { m_order[0] });
|
|
m_declarations.set(m_function->m_named_return_value, { m_order[0] });
|
|
|
|
VariableAssignmentCollector collector(m_declarations);
|
|
for (auto const& block : m_order)
|
|
collector.run(block);
|
|
|
|
for (auto const& [decl, blocks] : m_declarations) {
|
|
++m_mark_version;
|
|
|
|
Queue<BasicBlockRef> queue;
|
|
for (auto const& block : blocks)
|
|
queue.enqueue(block);
|
|
|
|
while (!queue.is_empty()) {
|
|
Vertex u(queue.dequeue());
|
|
|
|
for (Vertex frontier : u->d_frontier) {
|
|
if (frontier->mark == m_mark_version)
|
|
continue;
|
|
frontier->mark = m_mark_version;
|
|
add_phi_node(frontier.block(), decl);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ===== rename_variables =====
|
|
namespace {
|
|
template<typename CreateSSAVariableFunc, typename RenameVariableFunc>
|
|
class VariableRenamer : private RecursiveASTVisitor {
|
|
public:
|
|
VariableRenamer(CreateSSAVariableFunc create, RenameVariableFunc rename)
|
|
: m_create(create)
|
|
, m_rename(rename)
|
|
{
|
|
}
|
|
|
|
void run(BasicBlockRef block)
|
|
{
|
|
for (auto& expression : block->m_expressions)
|
|
run_in_subtree(expression);
|
|
run_in_const_subtree(block->m_continuation);
|
|
}
|
|
|
|
protected:
|
|
RecursionDecision on_entry(Tree tree) override
|
|
{
|
|
if (tree->is_statement())
|
|
TODO();
|
|
|
|
auto binary_operation = as<BinaryOperation>(tree);
|
|
if (binary_operation && binary_operation->m_operation == BinaryOperator::Assignment) {
|
|
run_in_subtree(binary_operation->m_right);
|
|
if (auto variable = as<Variable>(binary_operation->m_left); variable) {
|
|
m_create(variable->m_name);
|
|
m_rename(variable.release_nonnull());
|
|
} else {
|
|
run_in_subtree(binary_operation->m_left);
|
|
}
|
|
return RecursionDecision::Continue;
|
|
}
|
|
|
|
if (auto variable = as<Variable>(tree); variable) {
|
|
m_rename(variable.release_nonnull());
|
|
return RecursionDecision::Continue;
|
|
}
|
|
|
|
return RecursionDecision::Recurse;
|
|
}
|
|
|
|
private:
|
|
CreateSSAVariableFunc m_create;
|
|
RenameVariableFunc m_rename;
|
|
};
|
|
}
|
|
|
|
void SSABuildingPass::make_new_ssa_variable_for(NamedVariableDeclarationRef var)
|
|
{
|
|
m_undo_vector.append(var);
|
|
|
|
u64 id = 0;
|
|
if (auto it = m_next_id.find(var); it == m_next_id.end())
|
|
m_next_id.set(var, 1);
|
|
else
|
|
id = it->value++;
|
|
auto ssa_decl = make_ref_counted<SSAVariableDeclaration>(id);
|
|
|
|
m_function->m_local_ssa_variables.append(ssa_decl);
|
|
|
|
if (auto it = m_def_stack.find(var); it == m_def_stack.end())
|
|
m_def_stack.set(var, { ssa_decl });
|
|
else
|
|
it->value.append(ssa_decl);
|
|
}
|
|
|
|
void SSABuildingPass::rename_variable(VariableRef var)
|
|
{
|
|
var->m_ssa = m_def_stack.get(var->m_name).value().last();
|
|
}
|
|
|
|
void SSABuildingPass::rename_variables(Vertex u, Vertex from)
|
|
{
|
|
size_t rollback_point = m_undo_vector.size();
|
|
|
|
for (auto& phi_node : u.block()->m_phi_nodes) {
|
|
// TODO: Find the right branch index without iterating through all of the branches.
|
|
bool found = false;
|
|
for (auto& branch : phi_node.branches) {
|
|
if (branch.block->m_index == from) {
|
|
rename_variable(branch.value);
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
VERIFY(found);
|
|
}
|
|
|
|
if (u->mark == m_mark_version)
|
|
return;
|
|
u->mark = m_mark_version;
|
|
|
|
for (auto& phi_node : u.block()->m_phi_nodes) {
|
|
make_new_ssa_variable_for(phi_node.var->m_name);
|
|
rename_variable(phi_node.var);
|
|
}
|
|
|
|
VariableRenamer renamer(
|
|
[&](NamedVariableDeclarationRef decl) {
|
|
make_new_ssa_variable_for(move(decl));
|
|
},
|
|
[&](VariableRef var) {
|
|
rename_variable(move(var));
|
|
});
|
|
renamer.run(u.block());
|
|
|
|
if (auto function_return = as<ControlFlowFunctionReturn>(u.block()->m_continuation); function_return) {
|
|
// CFG should have exactly one ControlFlowFunctionReturn.
|
|
VERIFY(m_function->m_return_value == nullptr);
|
|
m_function->m_return_value = function_return->m_return_value->m_ssa;
|
|
}
|
|
|
|
for (size_t j : u->outgoing_edges)
|
|
rename_variables(j, u);
|
|
|
|
while (m_undo_vector.size() > rollback_point)
|
|
(void)m_def_stack.get(m_undo_vector.take_last()).value().take_last();
|
|
}
|
|
|
|
void SSABuildingPass::rename_variables()
|
|
{
|
|
HashMap<StringView, size_t> argument_index_by_name;
|
|
for (size_t i = 0; i < m_function->m_arguments.size(); ++i)
|
|
argument_index_by_name.set(m_function->m_arguments[i].name, i);
|
|
m_function->m_ssa_arguments.resize(m_function->m_arguments.size());
|
|
|
|
for (auto const& [name, var_decl] : m_function->m_local_variables) {
|
|
make_new_ssa_variable_for(var_decl);
|
|
|
|
if (auto maybe_index = argument_index_by_name.get(name); maybe_index.has_value()) {
|
|
size_t index = maybe_index.value();
|
|
m_function->m_ssa_arguments[index] = m_def_stack.get(var_decl).value()[0];
|
|
}
|
|
}
|
|
make_new_ssa_variable_for(m_function->m_named_return_value);
|
|
|
|
++m_mark_version;
|
|
rename_variables(0);
|
|
VERIFY(m_function->m_return_value);
|
|
m_function->reindex_ssa_variables();
|
|
}
|
|
|
|
}
|