1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-20 13:55:08 +00:00
serenity/Kernel/Graphics/VirtIOGPU/VirtIOFrameBufferDevice.cpp
Tom fdae117600 WindowServer: Implement support for combined buffer flipping + flushing
Some devices may require DMA transfers to flush the updated buffer
areas prior to flipping. For those devices we track the areas that
require flushing prior to the next flip. For devices that do not
support flipping, but require flushing, we'll simply flush after
updating the front buffer.

This also adds a small optimization that skips these steps entirely for
a screen that doesn't have any updates that need to be rendered.
2021-07-04 23:59:17 +02:00

308 lines
10 KiB
C++

/*
* Copyright (c) 2021, Sahan Fernando <sahan.h.fernando@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Graphics/GraphicsManagement.h>
#include <Kernel/Graphics/VirtIOGPU/VirtIOFrameBufferDevice.h>
#include <LibC/sys/ioctl_numbers.h>
namespace Kernel::Graphics {
VirtIOFrameBufferDevice::VirtIOFrameBufferDevice(VirtIOGPU& virtio_gpu, VirtIOGPUScanoutID scanout)
: BlockDevice(29, GraphicsManagement::the().allocate_minor_device_number())
, m_gpu(virtio_gpu)
, m_scanout(scanout)
{
if (display_info().enabled) {
Locker locker(m_gpu.operation_lock());
create_framebuffer();
}
}
VirtIOFrameBufferDevice::~VirtIOFrameBufferDevice()
{
}
void VirtIOFrameBufferDevice::create_framebuffer()
{
auto& info = display_info();
size_t buffer_length = page_round_up(calculate_framebuffer_size(info.rect.width, info.rect.height));
// First delete any existing framebuffers to free the memory first
m_framebuffer = nullptr;
m_framebuffer_sink_vmobject = nullptr;
// 1. Allocate frame buffer
m_framebuffer = MM.allocate_kernel_region(buffer_length, String::formatted("VirtGPU FrameBuffer #{}", m_scanout.value()), Region::Access::Read | Region::Access::Write, AllocationStrategy::AllocateNow);
auto write_sink_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No).release_nonnull();
auto num_needed_pages = m_framebuffer->vmobject().page_count();
NonnullRefPtrVector<PhysicalPage> pages;
for (auto i = 0u; i < num_needed_pages; ++i) {
pages.append(write_sink_page);
}
m_framebuffer_sink_vmobject = AnonymousVMObject::create_with_physical_pages(move(pages));
// 2. Create BUFFER using VIRTIO_GPU_CMD_RESOURCE_CREATE_2D
if (m_resource_id.value() != 0)
m_gpu.delete_resource(m_resource_id);
m_resource_id = m_gpu.create_2d_resource(info.rect);
// 3. Attach backing storage using VIRTIO_GPU_CMD_RESOURCE_ATTACH_BACKING
m_gpu.ensure_backing_storage(*m_framebuffer, buffer_length, m_resource_id);
// 4. Use VIRTIO_GPU_CMD_SET_SCANOUT to link the framebuffer to a display scanout.
m_gpu.set_scanout_resource(m_scanout.value(), m_resource_id, info.rect);
// 5. Render our test pattern
draw_ntsc_test_pattern();
// 6. Use VIRTIO_GPU_CMD_TRANSFER_TO_HOST_2D to update the host resource from guest memory.
transfer_framebuffer_data_to_host(info.rect);
// 7. Use VIRTIO_GPU_CMD_RESOURCE_FLUSH to flush the updated resource to the display.
flush_displayed_image(info.rect);
info.enabled = 1;
}
VirtIOGPURespDisplayInfo::VirtIOGPUDisplayOne const& VirtIOFrameBufferDevice::display_info() const
{
return m_gpu.display_info(m_scanout);
}
VirtIOGPURespDisplayInfo::VirtIOGPUDisplayOne& VirtIOFrameBufferDevice::display_info()
{
return m_gpu.display_info(m_scanout);
}
size_t VirtIOFrameBufferDevice::size_in_bytes() const
{
auto& info = display_info();
return info.rect.width * info.rect.height * sizeof(u32);
}
void VirtIOFrameBufferDevice::flush_dirty_window(VirtIOGPURect const& dirty_rect)
{
m_gpu.flush_dirty_window(m_scanout, dirty_rect, m_resource_id);
}
void VirtIOFrameBufferDevice::transfer_framebuffer_data_to_host(VirtIOGPURect const& rect)
{
m_gpu.transfer_framebuffer_data_to_host(m_scanout, rect, m_resource_id);
}
void VirtIOFrameBufferDevice::flush_displayed_image(VirtIOGPURect const& dirty_rect)
{
m_gpu.flush_displayed_image(dirty_rect, m_resource_id);
}
bool VirtIOFrameBufferDevice::try_to_set_resolution(size_t width, size_t height)
{
if (width > MAX_VIRTIOGPU_RESOLUTION_WIDTH || height > MAX_VIRTIOGPU_RESOLUTION_HEIGHT)
return false;
auto& info = display_info();
Locker locker(m_gpu.operation_lock());
info.rect = {
.x = 0,
.y = 0,
.width = (u32)width,
.height = (u32)height,
};
create_framebuffer();
return true;
}
int VirtIOFrameBufferDevice::ioctl(FileDescription&, unsigned request, FlatPtr arg)
{
REQUIRE_PROMISE(video);
switch (request) {
case FB_IOCTL_GET_SIZE_IN_BYTES: {
auto* out = (size_t*)arg;
size_t value = size_in_bytes();
if (!copy_to_user(out, &value))
return -EFAULT;
return 0;
}
case FB_IOCTL_SET_RESOLUTION: {
auto* user_resolution = (FBResolution*)arg;
FBResolution resolution;
if (!copy_from_user(&resolution, user_resolution))
return -EFAULT;
if (!try_to_set_resolution(resolution.width, resolution.height))
return -EINVAL;
resolution.pitch = pitch();
if (!copy_to_user(user_resolution, &resolution))
return -EFAULT;
return 0;
}
case FB_IOCTL_GET_RESOLUTION: {
auto* user_resolution = (FBResolution*)arg;
FBResolution resolution;
resolution.pitch = pitch();
resolution.width = width();
resolution.height = height();
if (!copy_to_user(user_resolution, &resolution))
return -EFAULT;
return 0;
}
case FB_IOCTL_FLUSH_BUFFERS: {
FBFlushRects user_flush_rects;
if (!copy_from_user(&user_flush_rects, (FBFlushRects*)arg))
return -EFAULT;
if (user_flush_rects.buffer_index != 0)
return -EINVAL;
if (Checked<unsigned>::multiplication_would_overflow(user_flush_rects.count, sizeof(FBRect)))
return -EFAULT;
for (unsigned i = 0; i < user_flush_rects.count; i++) {
FBRect user_dirty_rect;
if (!copy_from_user(&user_dirty_rect, &user_flush_rects.rects[i]))
return -EFAULT;
if (m_are_writes_active) {
VirtIOGPURect dirty_rect {
.x = user_dirty_rect.x,
.y = user_dirty_rect.y,
.width = user_dirty_rect.width,
.height = user_dirty_rect.height
};
flush_dirty_window(dirty_rect);
}
}
return 0;
}
default:
return -EINVAL;
};
}
KResultOr<Region*> VirtIOFrameBufferDevice::mmap(Process& process, FileDescription&, const Range& range, u64 offset, int prot, bool shared)
{
REQUIRE_PROMISE(video);
if (!shared)
return ENODEV;
if (offset != 0)
return ENXIO;
if (range.size() != page_round_up(size_in_bytes()))
return EOVERFLOW;
// We only allow one process to map the region
if (m_userspace_mmap_region)
return ENOMEM;
auto vmobject = m_are_writes_active ? m_framebuffer->vmobject().clone() : m_framebuffer_sink_vmobject;
if (vmobject.is_null())
return ENOMEM;
auto result = process.space().allocate_region_with_vmobject(
range,
vmobject.release_nonnull(),
0,
"VirtIOGPU Framebuffer",
prot,
shared);
if (result.is_error())
return result;
m_userspace_mmap_region = result.value();
return result;
}
void VirtIOFrameBufferDevice::deactivate_writes()
{
m_are_writes_active = false;
if (m_userspace_mmap_region) {
auto* region = m_userspace_mmap_region.unsafe_ptr();
auto vm_object = m_framebuffer_sink_vmobject->clone();
VERIFY(vm_object);
region->set_vmobject(vm_object.release_nonnull());
region->remap();
}
}
void VirtIOFrameBufferDevice::activate_writes()
{
m_are_writes_active = true;
if (m_userspace_mmap_region) {
auto* region = m_userspace_mmap_region.unsafe_ptr();
region->set_vmobject(m_framebuffer->vmobject());
region->remap();
}
}
void VirtIOFrameBufferDevice::clear_to_black()
{
auto& info = display_info();
size_t width = info.rect.width;
size_t height = info.rect.height;
u8* data = m_framebuffer->vaddr().as_ptr();
for (size_t i = 0; i < width * height; ++i) {
data[4 * i + 0] = 0x00;
data[4 * i + 1] = 0x00;
data[4 * i + 2] = 0x00;
data[4 * i + 3] = 0xff;
}
}
void VirtIOFrameBufferDevice::draw_ntsc_test_pattern()
{
static constexpr u8 colors[12][4] = {
{ 0xff, 0xff, 0xff, 0xff }, // White
{ 0x00, 0xff, 0xff, 0xff }, // Primary + Composite colors
{ 0xff, 0xff, 0x00, 0xff },
{ 0x00, 0xff, 0x00, 0xff },
{ 0xff, 0x00, 0xff, 0xff },
{ 0x00, 0x00, 0xff, 0xff },
{ 0xff, 0x00, 0x00, 0xff },
{ 0xba, 0x01, 0x5f, 0xff }, // Dark blue
{ 0x8d, 0x3d, 0x00, 0xff }, // Purple
{ 0x22, 0x22, 0x22, 0xff }, // Shades of gray
{ 0x10, 0x10, 0x10, 0xff },
{ 0x00, 0x00, 0x00, 0xff },
};
auto& info = display_info();
size_t width = info.rect.width;
size_t height = info.rect.height;
u8* data = m_framebuffer->vaddr().as_ptr();
// Draw NTSC test card
for (size_t y = 0; y < height; ++y) {
for (size_t x = 0; x < width; ++x) {
size_t color = 0;
if (3 * y < 2 * height) {
// Top 2/3 of image is 7 vertical stripes of color spectrum
color = (7 * x) / width;
} else if (4 * y < 3 * height) {
// 2/3 mark to 3/4 mark is backwards color spectrum alternating with black
auto segment = (7 * x) / width;
color = segment % 2 ? 10 : 6 - segment;
} else {
if (28 * x < 5 * width) {
color = 8;
} else if (28 * x < 10 * width) {
color = 0;
} else if (28 * x < 15 * width) {
color = 7;
} else if (28 * x < 20 * width) {
color = 10;
} else if (7 * x < 6 * width) {
// Grayscale gradient
color = 26 - ((21 * x) / width);
} else {
// Solid black
color = 10;
}
}
u8* pixel = &data[4 * (y * width + x)];
for (int i = 0; i < 4; ++i) {
pixel[i] = colors[color][i];
}
}
}
dbgln_if(VIRTIO_DEBUG, "Finish drawing the pattern");
}
u8* VirtIOFrameBufferDevice::framebuffer_data()
{
return m_framebuffer->vaddr().as_ptr();
}
}