Instead of locking it twice, we now frontload all the work that doesn't
touch the fd table, and then only lock it towards the end of the
syscall.
The benefit here is simplicity. The downside is that we do a bit of
unnecessary work in the EMFILE error case, but we don't need to optimize
that case anyway.
If the final copy_to_user() call fails when writing the file descriptors
to the output array, we have to make sure the file descriptors don't
remain in the process file descriptor table. Otherwise they are
basically leaked, as userspace is not aware of them.
This matches the behavior of our sys$socketpair() implementation.
We don't need to explicitly check for EMFILE conditions before doing
anything in sys$pipe(). The fd allocation code will take care of it
for us anyway.
We ensure that when we call SharedInodeVMObject::sync we lock the inode
lock before calling Inode virtual write_bytes method directly to avoid
assertion on the unlocked inode lock, as it was regressed recently. This
is not a complete fix as the need to lock from each path before calling
the write_bytes method should be avoided because it can lead to
hard-to-find bugs, and this commit only fixes the problem temporarily.
Previously, when starved for pages, *all* clean file-backed memory
would be released, which is quite excessive.
This patch instead releases just 1 page, since only 1 page is needed
to satisfy the request to `allocate_physical_page()`
Previously, we could only release *all* clean pages.
This patch makes it possible to release a specific amount of clean
pages. If the attempted number of pages to release is more than the
amount of clean pages, all clean pages will be released.
At the point at which we try to map the Region it was already added to
the Process region tree, so we have to make sure to remove it before
freeing it in the mapping failure path, otherwise the tree will contain
a dangling pointer to the free'd instance.
This fixes an issue where failing the fork due to OOM or other error,
we'd end up destroying the Process too early. By the time we got to
WaitBlockerSet::finalize(), it was long gone.
Until now, our only backup plan when running out of physical pages
was to try and purge volatile memory. If that didn't work out, we just
hung userspace out to dry with an ENOMEM.
This patch improves the situation by also considering clean, file-backed
pages (that we could page back in from disk).
This could be better in many ways, but it already allows us to boot to
WindowServer with 256 MiB of RAM. :^)
This enum was created to help put distinction between the commandset and
the interface type, as ATAPI devices are simply ATA devices utilizing
the SCSI commandset. Because we don't support ATAPI, putting such type
of distinction is pointless, so let's remove this for now.
We don't really support ATAPI (SCSI packets over ATA channels) and it's
uncertain if we ever will support such type of media. For this reason,
there's basically no reason to keep this code.
If we ever introduce ATAPI support into the Kernel, we can simply put
this back into the codebase.
In the near future, we will be able to figure out connections between
storage devices and their partitions, so there's no need to hardcode 16
partitions per storage device - each storage device should be able to
have "infinite" count of partitions in it, and we should be able to use
and figure out about them.
This does not need to be a critical dmesg, as the system stays up
it makes more sense for it to be a normal dmesg message.
Luke mentioned this on discord, they really deserve the credit :^)
Reported-by: Luke Wilde <lukew@serenityos.org>
This deadlock was introduced with the creation of this API. The lock
order is such that we always need to take the page directory lock
before we ever take the MM lock.
This function violated that, as both Region creation and region
destruction require the pd and mm locks, but with the mm lock
already acquired we deadlocked with SMP mode enabled while other
threads were allocating regions.
With this change SMP boots to the desktop successfully for me,
(and then subsequently has other issues). :^)
This makes sure that the debug message are properly aligned when running
the kernel bare-metal on a Raspberry Pi. While we are here, also move
the function out of line.
We were previously rejecting `SO_REUSEADDR` with an `ENOPROTOOPT`, but
that made QEMU unhappy. Instead, just silently discard it and print a
FIXME message in case anybody wonders what went wrong if the system
won't reuse an address.
Instead of requiring each FileSystem implementation to call this method
when trying to write data, do the calls at 2 points to avoid further
calls (or lack of them due to not remembering to use it) at other files
and locations in the codebase.
Currently the SysFS node for USB devices is only initialized for USB
hubs, which means it will cause a kernel crash upon being dereferenced
in a non-hub device. This fixes the problem by making initialization
happen for all USB devices.
We should actually start counting from the parent directory and not from
the symbolic link as it will represent a wrong count of hops from the
actual mountpoint.
The symlinks in /sys/dev/block and /sys/dev/char worked only by luck,
because I have set it to the wrong parent directory which is the
/sys/dev directory, so with the symlink it was 3 hops to /sys, together
with the root directory, therefore, everything seemed to work.
Now that the device symlinks in /sys/dev/block and /sys/dev/char are set
to the right parent directory and we start measure hops from root
directory with the parent directory of a symlink, everything seem to
work correctly now.
Now that the infrastructure of the Graphics subsystem is quite stable,
it is time to try to fix a long-standing problem, which is the lack of
locking on display connector devices. Reading and writing from multiple
processes to a framebuffer controlled by the display connector is not a
huge problem - it could be solved with POSIX locking.
The real problem is some program that will try to do ioctl operations on
a display connector without the WindowServer being aware of that which
can lead to very bad situations, for example - assuming a framebuffer is
encoded at a known resolution and certain display timings, but another
process changed the ModeSetting of the display connector, leading to
inconsistency on the properties of the current ModeSetting.
To solve this, there's a new "master" ioctl to take "ownership" and
another one to release that ownership of a display connector device. To
ensure we will not hold a Process object forever just because it has an
ownership over a display connector, we hold it with a weak reference,
and if the process is gone, someone else can take an ownership.
This header file represents the entire interface between the kernel and
userland, and as such, no longer should be called FB.h but something
that represents the whole graphics subsystem.