This is a part of refactoring towards making the paintable tree
independent of the layout tree. Now, instead of transferring text
fragments from the layout tree to the paintable tree during the layout
commit phase, we allocate separate PaintableFragments that contain only
the information necessary for painting. Doing this also allows us to
get rid LineBoxes, as they are used only during layout.
We have two known PlatformObjects that need to implement some of the
behavior of LegacyPlatformObjects to date: Window, and HTMLFormElement.
To make this not require double (or virtual) inheritance of
PlatformObject, move the behavior of LegacyPlatformObject into
PlatformObject. The selection of LegacyPlatformObject behavior is done
with a new bitfield of feature flags instead of a dozen virtual
functions that return bool. This change simplifies every class involved
in the diff with the notable exception of Window, which now needs some
ugly const casts to implement named property access.
Before this change, we would only cache and reuse Gfx::ScaledFont
instances for downloaded CSS fonts.
By moving it into Gfx::VectorFont, we get caching for all vector fonts,
including local system TTFs etc.
This avoids a *lot* of style invalidations in LibWeb, since we now vend
the same Gfx::Font pointer for the same font when used repeatedly.
This patch adds basic support for the SVG `<textPath>`, so it supports
placing text along a path, but none of the extra attributes for
controlling the layout of the text. This is enough to correctly display
the MDN example.
AbstractBrowsingContext has a subclass RemoteBrowsingContext without a
visit_edges() override (and it doesn't really need one). But currently,
we rely on subclasses visiting AbstractBrowsingContext's opener BC.
This adds a visit_edges() to AbstractBrowsingContext to explicitly visit
the opener BC itself.
These wrappers will make it much easier to do various operations on the
different ArrayBuffer-related classes in LibWeb compared to the current
solution, which is to just accept a Handle<Object> everywhere (and use
"any" in the *.idl files).
Co-Authored-By: Matthew Olsson <mattco@serenityos.org>
This is an internal object that must be explicitly enabled by the chrome
before it is added to the Window. The Inspector object will be used by a
special WebView that will replace all chrome-specific inspector windows.
The IDL defines methods that this WebView will need to inform the chrome
of various events, such as the user clicking a DOM node.
By consistently accepting only device pixel values instead of a mix of
CSSPixels and DevicePixels values, we can simplify the implementation
of paint_border() and paint_all_borders().
We now create a WorkerAgent for the parent context, which is currently
only a Window. Note that Workers can have Workers per the spec.
The WorkerAgent spawns a WebWorker process to hold the actual
script execution of the Worker. This is modeled with the
DedicatedWorkerHost object in the WebWorker process.
A start_dedicated_worker IPC method in the WebWorker IPC creates the
WorkerHost object. Future different worker types may use different IPC
messages to create their WorkerHost instance.
This implementation cannot yet postMessage between the parent and the
child processes.
Co-Authored-By: Andreas Kling <kling@serenityos.org>
This is mostly a copy-paste of the algorithms already in StyleComputer
with spec links and comments. The only thing that really changed is the
handling of values outside of the range [0, 1] in the cubic bezier
function.
The implementation in StyleComputer will be removed in a later commit.
This makes use of the new Gfx::Path::text() to handle SVG text elements,
with this text is just a regular path, and can be manipulated like any
other graphics element.
This removes the SVGTextPaintable and makes both <text> and geometry
elements use a new (shared) SVGPathPaintable. This is identical to the
old SVGGeometryPaintable. This simplifies painting as once something is
resolved to a Gfx::Path, the painting logic is the same.
This modification introduces a new layer to the painting process. The
stacking context traversal no longer immediately calls the
Gfx::Painter methods. Instead, it writes serialized painting commands
into newly introduced RecordingPainter. Created list of commands is
executed later to produce resulting bitmap.
Producing painting command list will make it easier to add new
optimizations:
- It's simpler to check if the painting result is not visible in the
viewport at the command level rather than during stacking context
traversal.
- Run painting in a separate thread. The painting thread can process
serialized painting commands, while the main thread can work on the
next paintable tree and safely invalidate the previous one.
- As we consider GPU-accelerated painting support, it would be easier
to back each painting command rather than constructing an alternative
for the entire Gfx::Painter API.
For now, part of this is commented-out. Our current implementations of
`<mask>` and `<symbol>` rely on creating layout nodes, so they can't be
`display: none`.
It does not currently handle any of the actual scripting, but this
should at least allow us to create an instance of the element.
The test being added here isn't actually testing much, but before the
previous commit we used to crash parsing the page due to a TODO().
The `to_string()` for this is modified a little from the original,
because we have to calculate what the layer-count is then, instead of
having it already calculated.