The paintable tree structure more closely matches the painting order
when fragments are owned by corresponding inline paintables. This
change does not affect the layout tree, as it is more convenient for
layout purposes to have all fragments owned by a block container in
one place.
Additionally, this improves performance significantly on pages with
many fragments, as we no longer have to walk the ancestor chain up
to the closest block container to determine if a fragment belongs
to an inline paintable.
This is a part of refactoring towards making the paintable tree
independent of the layout tree. Now, instead of transferring text
fragments from the layout tree to the paintable tree during the layout
commit phase, we allocate separate PaintableFragments that contain only
the information necessary for painting. Doing this also allows us to
get rid LineBoxes, as they are used only during layout.
Fragments contained by the inline node should be painted in the
foreground phase for this node, instead of being painted as a part of
the containing PaintableWithLines. This change implements that by
marking all fragments contained by inline nodes so they can be skipped
while painting the content of PaintableWithLines. This is an ugly way,
and instead, we should make InlinePaintables own all fragments
contained by them.
This fixes the issue that occurred when, after clicking an inline
paintable page would always scroll to the top. The problem was that
`scroll_an_element_into_view()` relies on `get_bounding_client_rect()`
to produce the correct scroll position and for inline paintables we
were always returning zero rect before this change.
This change fixes a problem that we should not call `to_px()` to
resolve any length or percentage values during paintables traversal
because that is supposed to happen while performing layout.
Also it improves performance because before we were resolving border
radii during each painting phase but now it happens only once during
layout.
Currently, in CPU painter, border painting is implemented by building
a Gfx::Path that is filled by Gfx::AntiAliasingPainter. In the GPU
painter, we will likely want to do something different, and with a
special command, it becomes possible.
Also, by making this change, the CPU executor also benefits because now
we can skip building paths for borders that are out of the viewport.
By consistently accepting only device pixel values instead of a mix of
CSSPixels and DevicePixels values, we can simplify the implementation
of paint_border() and paint_all_borders().
Build a grid snapped to device pixels and use it to construct the
rectangles for the cell edges, same as for collapsed borders. This is
especially important when border-spacing is set to 0 since it avoids
gaps between adjacent cells which have borders set.
...along with `outline-color`, `outline-style`, and `outline-width`.
This re-uses the existing border-painting code, which seems to work well
enough!
This replaces the previous code for drawing focus-outlines, with generic
outline painting for any elements that want it. Focus outlines are now
instead supported by this code in Default.css:
```css
:focus-visible {
outline: auto;
}
```
This makes it possible to set a pseudo-element as the inspected node
using Document::set_inspected_node(), Document then provides
inspected_layout_node() for the painting related functions.
This simplifies the ownership model between DOM/layout/paint nodes
immensely by deferring to the garbage collector for figuring out what's
live and what's not.
This fixes a few sizing issues too. The page size is now correct in most
cases! \o/
We get to remove some of the `to_type<>()` shenanigans, though it
reappears in some other places.
This commit adds some much nicer border painting, which now supports:
- Elliptical corners
- Blending between different border thicknesses, with rounded corners
- Anti-aliasing
There are some little TODOs left to tackle:
- Painting the corners with line styles other than solid
- Blending between colors on the corners (see comments)
The painting requires allocating a small bitmap, that only fits the
corners (so in most cases this is very small).
This bitmap is then cached so for all paints but the first there will
be no further allocations.
By using enclosing_int_rect(), borders and backgrounds of boxes were
sometimes 1 pixel off, making things slightly larger than they should
be. Fix this by using to_rounded() instead of enclosing_int_rect().
There's definitely more of these type of issues lurking in the code,
and we'll get to them in time.
The `text-shadow` property is almost identical to `box-shadow`:
> Values are interpreted as for box-shadow [CSS-BACKGROUNDS-3].
> (But note that the inset keyword are not allowed.)
So, let's use the same data structures and parsing code for both. :^)
The absolute rect of a paintable is somewhat expensive to compute. This
is because all coordinates are relative to the nearest containing block,
so we have to traverse the containing block chain and apply each offset
to get the final rect.
Paintables will never move between containing blocks, nor will their
absolute rect change. If anything changes, we'll simpl make a new
paintable and replace the old one.
Take advantage of this by caching the containing block and absolute rect
after first access.