This modification introduces a new layer to the painting process. The
stacking context traversal no longer immediately calls the
Gfx::Painter methods. Instead, it writes serialized painting commands
into newly introduced RecordingPainter. Created list of commands is
executed later to produce resulting bitmap.
Producing painting command list will make it easier to add new
optimizations:
- It's simpler to check if the painting result is not visible in the
viewport at the command level rather than during stacking context
traversal.
- Run painting in a separate thread. The painting thread can process
serialized painting commands, while the main thread can work on the
next paintable tree and safely invalidate the previous one.
- As we consider GPU-accelerated painting support, it would be easier
to back each painting command rather than constructing an alternative
for the entire Gfx::Painter API.
This allows applying SVG <mask>s to elements. It is only implemented for
the simplest (and default) case:
- mask-type = luminance
- maskContentUnits = maskContentUnits
- maskUnits = objectBoundingBox
- Default masking area
It should be possible to extend to cover more cases. Though the layout
for maskContentUnits = objectBoundingBox will be tricky to figure out.
This fixes an issue where the value would be out of sync with reality
in anonymous wrapper block boxes, since we forgot to compute m_visible
after assigning the computed values to them.
Fixes#21106
d06d4eb made the `clip` property apply to children of an absolute-
positioned element, but caused it not to be applied to the element the
property was applied to directly.
To fix this, apply the clip in new `before_paint()` and `after_paint()`
functions. Doing so keeps painter state from leaking from `paint()`,
but still allows subclasses of `PaintableBox` clip their contents
correctly without repeating the application of the clip rectangle.
This patch just adds the new root paintable and updates the tests
expectations. The next patch will move painting logic from the layout
viewport to the paint viewport.
Instead of applying relative offsets (like position:relative insets)
during painting and hit testing, we now do a pass at the end of layout
and assign the final resolved offsets to paintables.
This makes painting and hit testing easier since they don't have to
think about relative offsets, and it also fixes a bug where offsets were
not applied to text fragments inside inline-flow elements that were
themselves position:relative.
Fixes painting of nested nodes in scrollable containers by moving
painter's scroll offset translation from paint_node() to
before_children_paint() and after_children_paint().
It is only PaintableBox that can have scrollable overflow so it doesn't
make sense to have handle_mousewheel() implementation in Paintable.
Also new implementation of handle_mousewheel() takes in account overflow
limits from scrollable_overflow_rect().
Importantly, we now only consider overflow from descendants with
explicltly visible overflow, and only from descendants that have the
measured box as their containing block.
Also, we now measure scrollable overflow for all boxes, not just scroll
containers. This will allow us to fix a long-standing paint problem in
the next commit.
Move painting of cell borders to a separated function since doing it
correctly has to consider the entire grid as a whole for the collapsed
borders case.
This reverts commit eb1ef59603c13c43b87c099c43c4d118dc8441f6.
The idea of saving clip box to apply it to handle `overflow: hidden`
turned out to break painting if box is painted before it's containing
block (it is possible if box has negative z-index).
There is a problem with current approach where overflow clip rectange is
calculated by aggregating intersection of absolute padding boxes of
boxes in containing block chain that resulting rectangle doesn't
respect transform properties.
To solve this problem `PaintableBox` is changed to store clip rectangle
saved from painter because it does respect transform properties of all
previously applied clip rectangles.
This simplifies the ownership model between DOM/layout/paint nodes
immensely by deferring to the garbage collector for figuring out what's
live and what's not.
This fixes a few sizing issues too. The page size is now correct in most
cases! \o/
We get to remove some of the `to_type<>()` shenanigans, though it
reappears in some other places.
...and also for hit testing, which is involved in most of them.
Much of this is temporary conversions and other awkwardness, which
should resolve itself as the rest of LibWeb is converted to these new
types. Hopefully. :thousandyakstare:
Since handling overflow: hidden in PaintableBox::before_children_paint
while following paint traversal order can't result in correctly computed
clip rectangle for elements that create their own stacking context
(because before_children_paint is called only for parent but overflow:
hidden can be set somewhere deeper but not in direct ancestor), here
introduced new function PaintableBox::clip_rect() that computes clip
rectangle by looking into containing block.
should_clip_overflow flag that disables clip for absolutely positioned
elements in before_children_paint and after_children_paint is removed
because after changing clip rectangle to be computed from not parent
but containing block it is not needed anymore (absolutely positioned
item is clipped if it's containing block has hidden overflow)
This fixes the Serenity logo vanishing after scrolling on the 4th
birthday post.
The previous check did not account for any translation in the painter.
This now uses the painter's clip rect and translation to work out
if a rect is visible. It also makes use of `absolute_paint_rect()`
rather than `absolute_rect()` which can account for things like
box-shadows.
This method returns the total area this element will paint to.
Currently, this just means accounting for box-shadows, though
there are likely more effects that need to be accounted for here.
This implements all the filters other than `saturate()`,
`hue-rotate()`, and `drop-shadow()`.
There are still a lot of FIXMEs to handle in the actual implementation
though, particularly around supporting transforms, but this handles
the most common use cases :^)
Note: With this change the border-radius is clipped if ethier the
overflow-x or overflow-y is hidden (it is a little unclear what
happens if just one is set, but it seems like most browsers
treat one set + border-radius the same as if overflow: hidden
was set).
This commit adds some much nicer border painting, which now supports:
- Elliptical corners
- Blending between different border thicknesses, with rounded corners
- Anti-aliasing
There are some little TODOs left to tackle:
- Painting the corners with line styles other than solid
- Blending between colors on the corners (see comments)
The painting requires allocating a small bitmap, that only fits the
corners (so in most cases this is very small).
This bitmap is then cached so for all paints but the first there will
be no further allocations.
Normally, paintable coordinates are relative to the nearest containing
block, but in the SVG case, since <svg> doesn't form a containing block,
we have to specialize the computation of SVGPaintable::absolute_rect().
There's no actual need to build the stacking context tree before
performing layout. Instead, make it lazy and build the tree when it's
actually needed for something.
This avoids a bunch of work in situations where multiple synchronous
layouts are forced (typically by JavaScript) without painting or hit
testing taking place in between.
It also opens up for style invalidations that only target the stacking
context tree.