Currently, in CPU painter, border painting is implemented by building
a Gfx::Path that is filled by Gfx::AntiAliasingPainter. In the GPU
painter, we will likely want to do something different, and with a
special command, it becomes possible.
Also, by making this change, the CPU executor also benefits because now
we can skip building paths for borders that are out of the viewport.
The current set of stacking context commands do not encode the
information needed to correctly paint the stacking context, instead,
they're based on the limitations of the current CPU renderer.
Stacking contexts should be able to be transformed by an arbitrary
3D transformation matrix, not just scaled from a source to a destination
rect. The `_with_mask()` stacking context also should not be separate
from the regular stacking context.
```c++
push_stacking_context(
bool semitransparent_or_has_non_identity_transform,
float opacity, Gfx::FloatRect const& source_rect,
Gfx::FloatRect const& transformed_destination_rect,
Gfx::IntPoint const& painter_location);
pop_stacking_context(
bool semitransparent_or_has_non_identity_transform,
Gfx::Painter::ScalingMode scaling_mode);
push_stacking_context_with_mask(
Gfx::IntRect const& paint_rect);
pop_stacking_context_with_mask(
Gfx::IntRect const& paint_rect,
RefPtr<Gfx::Bitmap> const& mask_bitmap,
Gfx::Bitmap::MaskKind mask_kind, float opacity);
```
This patch replaces this APIs with just:
```c++
push_stacking_context(
float opacity,
bool is_fixed_position,
Gfx::IntRect const& source_paintable_rect,
Gfx::IntPoint post_transform_translation,
CSS::ImageRendering image_rendering,
StackingContextTransform transform,
Optional<StackingContextMask> mask);
pop_stacking_context()
```
And moves the implementation details into the executor, this should
allow future backends to implement stacking contexts without these
limitations.
Representing a text run panting command as a vector of glyphs, rather
than as a string simplifies collecting of unique glyphs which is a
prerequisite for `prepare_glyphs_texture()` call.
This change makes RecordingPainter to emit a FillRect command instead
of FillRectWithRoundedCorners if all corners have a radius = 0.
`fill_rect_with_rounded_corners()` in LibGfx already has a similar
optimization. But now when we also have LibAccelGfx, which does not
support painting rectangles with rounded corners yet, it makes sense to
emit FillRect whenever possible.
After 4318bcf447 RecordingPainter
is suppoed to write commands in coordinate system of stacking context.
This commit adds missing translation for FillRect command.
Fixes regression introduced in 4318bcf447
`shadow_bounding_rect` is used on bitmap allocated for shadow and is
not supposed to be in coordinate system of stacking context. Same for
`text_rect`.
Fixes https://github.com/SerenityOS/serenity/issues/21587
Removing State and Restore reduces painting commands count by 30-50%
on an average website.
Due to this change, it was also necessary to replace AddClipRect with
SetClipRect command.
By storing painting command coordinates relative to the nearest
stacking context we can get rid of the Translate command.
Additionally, this allows us to easily check if the bounding
rectangles of the commands cover or intersect within a stacking
context. This should be useful if we decide to optimize by avoiding
the execution of commands that will be overpainted by the results of
subsequent commands.
This change separates the box outer shadow metrics calculations into a
separate function. This function is then used to obtain the shadow
bounding rectangle and skip painting if the entire shadow is outside
of the viewport.
This modification introduces a new layer to the painting process. The
stacking context traversal no longer immediately calls the
Gfx::Painter methods. Instead, it writes serialized painting commands
into newly introduced RecordingPainter. Created list of commands is
executed later to produce resulting bitmap.
Producing painting command list will make it easier to add new
optimizations:
- It's simpler to check if the painting result is not visible in the
viewport at the command level rather than during stacking context
traversal.
- Run painting in a separate thread. The painting thread can process
serialized painting commands, while the main thread can work on the
next paintable tree and safely invalidate the previous one.
- As we consider GPU-accelerated painting support, it would be easier
to back each painting command rather than constructing an alternative
for the entire Gfx::Painter API.