`consume_until(foo)` stops before foo, and so does
`ignore_until(Predicate)`, so let's make the other `ignore_until()`
overloads consistent with that so they're less confusing.
This commit moves the implementation of getopt into AK, and converts its
API to understand and use StringView instead of char*.
Everything else is caught in the crossfire of making
Option::accept_value() take a StringView instead of a char const*.
With this, we must now pass a Span<StringView> to ArgsParser::parse(),
applications using LibMain are unaffected, but anything not using that
or taking its own argc/argv has to construct a Vector<StringView> for
this method.
This adds the condition member.type->is_string() to the if statement, so
that we now conditionally check the dictionary member is a new string
and associated with an optional constructor parameter.
When a constructor has an optional dictionary as argument, and those
members are of type new string, make sure that we release_value()
setting the dictionary members.
This makes use of the new [UseNewAKString] extended attribute. Using
Vector storage will make it easier to make this interface into an IDL
iterable. It seems the reason it didn't use Vector originally was due
to awkward DeprecatedString -> String conversions.
Adding the [UseNewAKString] extended attribute to an interface will
cause all IDL string types to use String instead of DeprecatedString.
This is done on an per interface level instead of per type/parameter
because:
- It's much simpler to implement, as the generators can already access
the interface's extended attributes. Doing it per type/parameter
would mean parsing and piping extended attributes for each type that
doesn't already take extended attributes, such as unions.
- Allows more incremental adoption of AK::String. For example, adding
[UseNewAKString] to BodyInit would require refactoring Request,
Response and XMLHttpRequest to AK::String in one swoop. Doing it on
the interface allows you to convert just XHR and its dependencies at
once, for example.
- Simple string return types (i.e. not parameterised or not in a union)
already accept any of the string types JS::PrimitiveString::create
accepts. For example, you can add [UseNewAKString] to DOMStringMap to
convert Element attributes to AK::String and still return AK::String
from get_attribute, without adding [UseNewAKString] to Element.
- Adding [UseNewAKString] to one function typically means adding it to
a bunch of other functions, if not the rest of them. For example,
adding [UseNewAKString] to the parameters FormData.append would
either mean converting AK::String to AK::DeprecatedString or storing
the AK::String as-is, making the other functions of FormData have to
convert back from AK::String or also support AK::String.
This includes an Error::create overload to create an Error from a UTF-8
StringView. If creating a String from that view fails, the factory will
return an OOM InternalError instead. VM::throw_completion can also make
use of this overload via its perfect forwarding.
For example, consider cases where we want to propagate errors only in
specific instances:
auto result = read_data(); // something like ErrorOr<ByteBuffer>
if (result.is_error() && result.error().code() != EINTR)
continue;
auto bytes = TRY(result);
The TRY invocation will currently copy the byte buffer when the
expression (in this case, just a local variable) is stored into
_temporary_result.
This patch binds the expression to a reference to prevent such copies.
In less trival invocations (such as TRY(some_function()), this will
incur only temporary lifetime extensions, i.e. no functional change.
First, this adds an overload of PrimitiveString::create for StringView.
This overload will throw an OOM completion if creating a String fails.
This is not only a bit more convenient, but it also ensures at compile
time that all PrimitiveString::create(string_view) invocations will be
handled as String and OOM-aware.
Next, this wraps all invocations to PrimitiveString::create(string_view)
with MUST_OR_THROW_OOM.
A small PrimitiveString::create(DeprecatedFlyString) overload also had
to be added to disambiguate between the StringView and DeprecatedString
overloads.
`Stream` will be qualified as `AK::Stream` until we remove the
`Core::Stream` namespace. `IODevice` now reuses the `SeekMode` that is
defined by `SeekableStream`, since defining its own would require us to
qualify it with `AK::SeekMode` everywhere.
Note that as of this commit, there aren't any such throwers, and the
call site in Heap::allocate will drop exceptions on the floor. This
commit only serves to change the declaration of the overrides, make sure
they return an empty value, and to propagate OOM errors frm their base
initialize invocations.
Having an alias function that only wraps another one is silly, and
keeping the more obvious name should flush out more uses of deprecated
strings.
No behavior change.
For now, this is limited to strings that are 3 bytes or less. We can use
7 bytes on 64-bit platforms, but we do not yet assume 64-bit for Lagom
hosts (e.g. wasm).
In order to prevent this commit from having to refactor almost all of
Intl, the goal here is to update the internal parsing/canonicalization
of locales within LibLocale only. Call sites which are already equiped
to handle String and OOM errors do so, however.
This includes:
- Moving it from Bindings/ to HTML/
- Renaming it from LocationObject to Location
- Removing the manual definitions of the constructor and prototype
- Removing special handling of the Location interface from the bindings
generator
- Converting the JS_DEFINE_NATIVE_FUNCTIONs to regular functions
returning DeprecatedString instead of PrimitiveString
- Adding missing (no-op) setters for the various attributes, which are
expected to exist by the bindings generator
Case folding rules have a similar mapping style as special casing rules,
where one code point may map to zero or more case folding rules. These
will be used for case-insensitive string comparisons. To see how case
folding can differ from other casing rules, consider "ß" (U+00DF):
>>> "ß".lower()
'ß'
>>> "ß".upper()
'SS'
>>> "ß".title()
'Ss'
>>> "ß".casefold()
'ss'