This sets the stage so that DisplaySettings can configure the screen
layout and set various screen resolutions in one go. It also allows
for an easy "atomic" revert of the previous settings.
If there are any screens that are detached from other screens it would
not be possible to get to them using the mouse pointer. Also make sure
that none of the screens are overlapping.
We were calculating the old window rectangle after changing window
states that may affect these calculations, which sometimes resulted
in artifacts left on the screen, particularily when tiling a window
as this now also constrains rendering to one screen.
Instead, just calculate the new rectangle and use the window's
occlusion information to figure out what areas need to be invalidated.
When a window is maximized or tiled then we want to constrain rendering
that window to the screen it's on. This prevents "bleeding" of the
window frame and shadow onto the adjacent screen(s).
This allows WindowServer to use multiple framebuffer devices and
compose the desktop with any arbitrary layout. Currently, it is assumed
that it is configured contiguous and non-overlapping, but this should
eventually be enforced.
To make rendering efficient, each window now also tracks on which
screens it needs to be rendered. This way we don't have to iterate all
the windows for each screen but instead use the same rendering loop and
then only render to the screen (or screens) that the window actually
uses.
PR #5665 updated TextEditor to open files at a specific line/column
location using the file:line:col argument, rather than the -l flag.
This change updates LaunchServer to use that convention, though note it
does only pass the line number and not a column number, as per all
previous behaviour.
Some paths of the mouse event processing code will upgrade the event
from a regular MouseDown to a MouseDoubleClick. That's why we were
passing `MouseEvent&` everywhere.
For the paths that don't need to do this, passing `MouseEvent const&`
reduces the cognitive burden a bit, so let's do that.
Instead of plumbing a Window* through the entire mouse event processing
logic, just do a hit test and say that the window under the cursor is
the hovered window.
It's funny how much easier this is now that we have a way to hit test
the entire window stack with one call.
Move the logic for processing a mouse event that hits a specific window
into its own function.
If the window is blocked by a modal child, we now get that out of the
way first, so we don't have to think about it later.
Even if a window is in fullscreen mode, we still want hit testing to
walk the window stack. Otherwise child windows of the fullscreen
window will not receive mouse events.
The button widgets internally rendered by WindowServer are only used
in titlebars, and require a bit of mouse event handling. Instead of
mixing it with the window-oriented mouse event handling, get the
button event stuff out of the way first.
We were forgetting to preserve the m_drag and m_mime_data members of
WindowServer::MouseEvent when making a translated copy.
This didn't affect any reachable code paths before this change.
If a window is currently actively tracking input events (because
sent it a MouseDown and haven't sent it a MouseUp yet), we now simply
send mouse events to that window right away before doing any other
event processing.
This makes it much easier to reason about mouse events.
Instead of just answering hit/no-hit when hit testing windows, we now
return a HitTestResult object which tells you which window was hit,
where it was hit, and whether you hit the frame or the content.
This feature had been there since early on and was not actually useful
for anything. I just added it because it was fun. In retrospect, it's
not a very good feature and I only ever activated it by accident.
This patch moves the window stack out of WindowManager and into its own
WindowStack class.
A WindowStack is an ordered list of windows with an optional highlight
window. The highlight window mechanism is used during Super+Tab window
switching to temporarily bring a window to the front.
This is mostly mechanical, just moving the code to its own class.
Remove the confusingly-named inflate_for_shadow() function and inline
its logic into render_to_cache(). And remove the m_shadow_offset
member variable since it was only needed locally in one place.
Also improve some variable names to make it more understandable what
is going on.
This way we don't have to allocate this at runtime. I'm intentionally
not using static constexpr here because that would put the variable
into the .rodata segment and would therefore increase the binary by
4kB.
The old code also failed to free() the buffer in the destructor, however
that wasn't much of an issue because the Mixer object exists throughout
the program's entire lifetime.
Let clients manage their own window ID's. If you try to create a new
window with an existing ID, WindowServer will simply disconnect you
for misbehaving.
This removes the need for window creation to be synchronous, which
means that most GUI applications can now batch their entire GUI
initialization sequence without having to block waiting for responses.
This enables the WebServer to run protected by a username and password.
While it isn't possible to access such a protected server from inside
Serenity as of now (because neither the Browser nor pro(1) support
this), this may very well be the case in the future. :^)
This moves the configuration of the web server, which currently only
consists of the root path, into a new class, Configuration. Since the
configuration is global and not per client, it is accessed by a
singleton getter.
This change simplifies future extensions of the configurable parameters.
This changes the Client::set_error_response() to not take a "message"
anymore. It now uses the canonical reason phrase which is derived from
the response code.
This adds trailing slashes to all links to directories (when listing the
directory contents). This avoids the redirect that would otherwise
happen when browsing to those directories.
In the web server root directory, ".." has to be handled specially,
since everything above it does not exist from the point of view of the
user. The most sensible thing to do is to make ".." equal to ".". This
is also what ls(1) does for "/" and what "http://localhost/../"
evaluates to.
This also fixes a bug where stat() would fail on the directory above the
root directory, since it hasn't been unveiled for the process.
This adds a FileWatcher to the LookupServer which watches '/etc/hosts'
for changes during runtime and reloads its contents. If the file is
deleted, m_etc_hosts will be cleared.
Since we now need to access '/etc/hosts' later during runtime, it needs
to be unveiled with read permissions.