This function will be used once the kernel runs in high virtual memory
to unmap the identity mapping as userspace will later on use this memory
range instead.
And use it the code that will be part of the early boot process.
The PANIC macro and dbgln functions cannot be used as it accesses global
variables, which in the early boot process do not work, since the MMU is
not yet enabled.
In the upcoming commits, we'll change the kernel to run at a virtual
address in high memory. This commit prepares for that by making sure the
kernel and mmio are mapped into high virtual memory.
A lot of interrupt numbers are initialized with the unhandled interrupt
handler. Whenever a new handler is registered on one of these
interrupts, the old handler is unregistered first. Let's not be verbose
about this since it is perfectly normal.
Following registers accessors are updated and put in use:
* ID_AA64ISAR0_EL1, Instruction Set Attribute Register 0
Accessors for following registers are added and put in use:
* ID_AA64ISAR1_EL1, Instruction Set Attribute Register 1
* ID_AA64ISAR2_EL1, Instruction Set Attribute Register 2
* ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1
* ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2
* ID_AA64MMFR3_EL1, AArch64 Memory Model Feature Register 3
* ID_AA64MMFR4_EL1, AArch64 Memory Model Feature Register 4
* ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0
* ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1
* ID_AA64PFR2_EL1, AArch64 Processor Feature Register 2
* ID_AA64ZFR0_EL1, AArch64 SVE Feature ID register 0
* ID_AA64SMFR0_EL1, AArch64 SME Feature ID register 0
* ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0
* ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1
Additionally, there are few CPU features detected with
* TCR_EL1, Translation Control Register
but detection mechanism using it (for LPA/LPA2) is probably wrong as
this is control register, not a id register, and needs further work.
Finally, following registers are provided. Former one is already used,
while latter is given for future use:
* MIDR_EL1, Main ID Register
* AIDR_EL1, Auxiliary ID Register
Settled for `cpu_feature_to_name` as that naming is more descriptive
and similarly named `cpu_feature_to_description` function will be
provided for Aarch64.
This seems to work perfectly OK on my ICH7 test machine and also it
works on QEMU, so it is probably OK to restore this.
This will ensure we always get scan code set 1 input, because we enable
scan code set 2 and PS/2 translation on the first (keyboard) port.
The setting of scan code set sequence is removed, as it's buggy and
could lead the controller to fail immediately when doing self-test
afterwards. We will restore it when we understand how to do so safely.
Allow the user to determine a preferred detection path with a new kernel
command line argument. The defualt option is to check i8042 presence
with an ACPI check and if necessary - an "aggressive" test to determine
i8042 existence in the system.
Also, keep the i8042 controller pointer on the stack, so don't assign
m_i8042_controller member pointer if it does not exist.
A virtual method named device_name() was added to
Kernel::PCI to support logging the PCI::Device name
and address using dmesgln_pci. Previously, PCI::Device
did not store the device name.
All devices inheriting from PCI::Device now use dmesgln_pci where
they previously used dmesgln.
These instances were detected by searching for files that include
AK/Memory.h, but don't match the regex:
\\b(fast_u32_copy|fast_u32_fill|secure_zero|timing_safe_compare)\\b
This regex is pessimistic, so there might be more files that don't
actually use any memory function.
In theory, one might use LibCPP to detect things like this
automatically, but let's do this one step after another.
These instances were detected by searching for files that include
AK/Concepts.h, but don't match the regex:
\\b(AnyString|Arithmetic|ArrayLike|DerivedFrom|Enum|FallibleFunction|Flo
atingPoint|Fundamental|HashCompatible|Indexable|Integral|IterableContain
er|IteratorFunction|IteratorPairWith|OneOf|OneOfIgnoringCV|SameAs|Signed
|SpecializationOf|Unsigned|VoidFunction)\\b
(Without the linebreaks.)
This regex is pessimistic, so there might be more files that don't
actually use any concepts.
In theory, one might use LibCPP to detect things like this
automatically, but let's do this one step after another.
These instances were detected by searching for files that include
AK/StdLibExtras.h, but don't match the regex:
\\b(abs|AK_REPLACED_STD_NAMESPACE|array_size|ceil_div|clamp|exchange|for
ward|is_constant_evaluated|is_power_of_two|max|min|mix|move|_RawPtr|RawP
tr|round_up_to_power_of_two|swap|to_underlying)\\b
(Without the linebreaks.)
This regex is pessimistic, so there might be more files that don't
actually use any "extra stdlib" functions.
In theory, one might use LibCPP to detect things like this
automatically, but let's do this one step after another.
These instances were detected by searching for files that include
AK/Format.h, but don't match the regex:
\\b(CheckedFormatString|critical_dmesgln|dbgln|dbgln_if|dmesgln|FormatBu
ilder|__FormatIfSupported|FormatIfSupported|FormatParser|FormatString|Fo
rmattable|Formatter|__format_value|HasFormatter|max_format_arguments|out
|outln|set_debug_enabled|StandardFormatter|TypeErasedFormatParams|TypeEr
asedParameter|VariadicFormatParams|v_critical_dmesgln|vdbgln|vdmesgln|vf
ormat|vout|warn|warnln|warnln_if)\\b
(Without the linebreaks.)
This regex is pessimistic, so there might be more files that don't
actually use any formatting functions.
Observe that this revealed that Userland/Libraries/LibC/signal.cpp is
missing an include.
In theory, one might use LibCPP to detect things like this
automatically, but let's do this one step after another.
This step would ideally not have been necessary (increases amount of
refactoring and templates necessary, which in turn increases build
times), but it gives us a couple of nice properties:
- SpinlockProtected inside Singleton (a very common combination) can now
obtain any lock rank just via the template parameter. It was not
previously possible to do this with SingletonInstanceCreator magic.
- SpinlockProtected's lock rank is now mandatory; this is the majority
of cases and allows us to see where we're still missing proper ranks.
- The type already informs us what lock rank a lock has, which aids code
readability and (possibly, if gdb cooperates) lock mismatch debugging.
- The rank of a lock can no longer be dynamic, which is not something we
wanted in the first place (or made use of). Locks randomly changing
their rank sounds like a disaster waiting to happen.
- In some places, we might be able to statically check that locks are
taken in the right order (with the right lock rank checking
implementation) as rank information is fully statically known.
This refactoring even more exposes the fact that Mutex has no lock rank
capabilites, which is not fixed here.
These instances were detected by searching for files that include
Array.h, but don't match the regex:
\\b(Array(?!\.h>)|iota_array|integer_sequence_generate_array)\\b
These are the three symbols defined by Array.h.
In theory, one might use LibCPP to detect things like this
automatically, but let's do this one step after another.
If a page fault occurs while interrupts are disabled, we were wrongly
enabling interrupts right away in the page fault handler.
Instead, we should only do this if interrupts were enabled when the
page fault occurred.
The hand-written assembly does not compile under Clang due to register
size mismatches. Using a loop is slower (~6 instructions on O2 as
opposed to 2 with hand-written assembly), but using the pause
instruction makes this more efficient even under TCG.
For pause we use isb sy which will put the processor to sleep while the
pipeline is being flushed. This instruction is also used by Rust in spin
loops and found to be more efficient, as well as being a rough
equivalent to the x86 pause instruction which we also use here.
For wait_check we use yield, which is a hinted nop that is faster to
execute, and I leave a FIXME for processing SMP messages once we support
SMP.
These two changes probably make spin loops work on aarch64 :^)
This commit changes the init.cpp file to start and initialize the
Scheduler, and actually runs init_stage2. To show that it actually
works, another thread is spawned and executed simultaneously, by context
switching between the two!
This requires two new functions, context_first_init and
restore_context_and_eret. With this code in place, we are now running
the first idle thread! :^)
This changes the stack pointer to the initial_thread stack pointer, and
pushes two pointers onto the stack that point to the initial_thread. The
function then jumps to the ip of the initial_thread, which will be
thread_context_first_enter, and hangs there because that function is not
yet implemented.
This does not handle everything correctly yet, such as setting the
correct state for running userspace applications, however this should be
enough to get kernel scheduling to work.
These are architecture-specific anyway, so they belong in the Arch
directory. This commit also adds ThreadRegisters::set_initial_state to
factor out the logic in Thread.cpp.
I can't think of a reason why copying the Processor class makes sense,
so lets make sure it's not possible to do it by accident by declaring
the copy constructor as deleted.
This removes the x86 specific hlt instruction from the scheduler, and
allows us to run the scheduler code for aarch64 by implementing
Processor::wait_for_interrupt for aarch64.